

EXERCISE 25(B)

1. Identify the pair of angles in each of the figure given below: adjacent angles, vertically opposite angles, interior alternate angles, corresponding angles or exterior alternate angles.

(c) (i) ∠1 and ∠10
(ii) ∠6 and ∠12
(iii) ∠8 and ∠10
(iv) ∠4 and ∠11
(v) ∠2 and ∠8

(vi) $\angle 5$ and $\angle 7$

Solution:

- (a) (i) $\angle 2$ and $\angle 4$ = Adjacent angles
- (ii) $\angle 1$ and $\angle 8$ = Alternate exterior angles
- (iii) $\angle 4$ and $\angle 5$ = Alternate interior angles
- (iv) $\angle 1$ and $\angle 5$ = Corresponding angles
- (v) $\angle 3$ and $\angle 5$ = Allied angles
- (b) (i) $\angle 2$ and $\angle 7$ = Alternate interior angles
- (ii) $\angle 4$ and $\angle 8$ = Corresponding angles
- (iii) $\angle 1$ and $\angle 8$ = Alternate exterior angles
- (iv) $\angle 1$ and $\angle 5$ =Corresponding angles
- (v) $\angle 4$ and $\angle 7$ = Allied angles
- (c)(i) $\angle 1$ and $\angle 10$ = Corresponding angles
- (ii) $\angle 6$ and $\angle 12$ = Alternate exterior angles
- (iii) $\angle 8$ and $\angle 10$ = Alternate interior angles
- (iv) $\angle 4$ and $\angle 11$ = Alternate interior angles
- (v) $\angle 2$ and $\angle 8$ = Alternate exterior angles
- (vi) $\angle 5$ and $\angle 7$ = Vertically opposite angles

2. Each figure given below shows a pair of parallel lines cut by a transversal. For each case, find a and b, giving reasons.

(i)

(iv)

We get,	
$b = 120^{0}$	
and $a = 60^{\circ}$	{corresponding angles}
Hence, $a = 60^{\circ}$	
$b = 120^{0}$	
(iii) $a = 110^{0}$	[Vertically opposite angles]
$b = 180^{\circ} - a$	[Co-interior angles]
$= 180^{\circ} - a$	
$= 180^{\circ} - 110^{\circ}$	
We get,	
$=70^{0}$	
(iv) $a = 60^{\circ}$	[Alternate interior angles]
$b = 180^{\circ} - a$	[Co-interior angles]
$= 180^{\circ} - 60^{\circ}$	
We get,	
$= 120^{0}$	
(v) $a = 72^{\circ}$	[Alternate interior angles]
$\mathbf{b} = \mathbf{a}$	[Vertically opposite angles]
Hence, $b = 72^{\circ}$	

3. If $\angle 1 = 120^{\circ}$, find the measures of: $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$, $\angle 6$, $\angle 7$ and $\angle 8$. Give reasons.

Given 1 || m and p is their transversal and $\angle 1 = 120^{\circ}$ $\angle 1 + \angle 2 = 180^{\circ}$ [Straight line angle] $120^{0} + \angle 2 = 180^{0}$ $\angle 2 = 180^{\circ} - 120^{\circ}$

We get, $\angle 2 = 60^{\circ}$ Therefore, $\angle 2 = 60^{\circ}$ But $\angle 1$ and $\angle 3$ [Vertically opposite angles] Hence, $\angle 3 = \angle 1 = 120^{\circ}$ Similarly, [Vertically opposite angles] $\angle 4 = \angle 2$ $\angle 4 = 60^{\circ}$ $\angle 5 = \angle 1$ [Corresponding angles] Hence, $\angle 5 = 120^{\circ}$ Similarly, $\angle 6 = \angle 2$ [Corresponding angles] $\angle 6 = 60^{\circ}$ $\angle 7 = \angle 5$ [Vertically opposite angles] Hence, $\angle 7 = 120^{\circ}$ [Vertically opposite angles] and $\angle 8 = \angle 6$ Hence, $\angle 8 = 60^{\circ}$ Therefore, the measures of angles are, $\angle 2 = 60^{\circ}$ $\angle 3 = 120^{\circ}$ $\angle 4 = 60^{\circ}$ $\angle 5 = 120^{\circ}$ $\angle 6 = 60^{\circ}$ $\angle 7 = 120^{\circ}$ and $\angle 8 = 60^{\circ}$

4. In the figure given below, find the measure of the angles denoted by x, y, z, p, q and r.

Solution:

(Linear pair of angles) $x = 180^{\circ} - 100^{\circ}$ $x = 80^{0}$ (Alternate exterior angles) $\mathbf{y} = \mathbf{x}$ $y = 80^{0}$ $z = 100^{\circ}$ (Corresponding angles) (Vertically opposite angles) $\mathbf{p} = \mathbf{x}$ $p = 80^{\circ}$ $q = 100^{\circ}$ (Vertically opposite angles) $\mathbf{r} = \mathbf{q}$ (Corresponding angles) $r = 100^{\circ}$ Therefore, the measures of angles are, $x = y = p = 80^{0}$ $q = r = z = 100^{\circ}$

5. Using the given figure, fill in the blanks.

 $\angle x = \dots;$ $\angle z = \dots;$ $\angle p = \dots;$ $\angle q = \dots;$ $\angle r = \dots;$ $\angle s = \dots;$

p = z (Vertically opposite angles) $= 60^{0}$ $q = 180^{0} - p (Linear pair of angles)$ $= 180^{0} - 60^{0}$ We get, $= 120^{0}$ $r = 180^{0} - x$ (Linear pair of angles) $= 180^{0} - 60^{0}$ We get, $= 120^{0}$ s = r (Vertically opposite angles) $s = r = 120^{0}$

6. In the given figure, find the angles shown by x, y, z and w. Give reasons.

7. Find a, b, c and d in the figure given below:

 $z = 75^{0}$ (Corresponding angles) Therefore, the angles are, $x = 105^{0}$, $y = 75^{0}$ and $z = 75^{0}$

