

EXERCISE 25(A)

1. Two straight lines AB and CD intersect each other at a point O and angle AOC = **50⁰**; find: (i) angle BOD (ii) ∠AOD (iii) ∠BOC 50° Α B **Solution:** (i) ∠BOD Given $\angle AOC = 50^{\circ}$ We know that, Vertically opposite angles are equal So, $\angle BOD = \angle AOC$ Therefore, $\angle BOD = 50^{\circ}$ (ii) ∠AOD $\angle AOD + \angle BOD = 180^{\circ}$ $\angle AOD + 50^{\circ} = 180^{\circ}$ {From (i)} $\angle AOD = 180^{\circ} - 50^{\circ}$ We get, $\angle AOD = 130^{\circ}$ (iii) ∠BOC We know that, Vertically opposite angles are equal So, $\angle BOC = \angle AOD$ Therefore, $\angle BOC = 130^{\circ}$

2. The adjoining figure, shows two straight lines AB and CD intersecting at P. If $\angle BPC = 4x - 5^{\circ} \text{ and } \angle APD = 3x + 15^{\circ}; \text{ find:}$

(i) the value of x (ii) ∠APD (iii) ∠BPD (iv) $\angle BPC$ **Solution:** (i) The value of x is calculated as, $3x + 15^0 = 4x - 5^0$ $3x - 4x = -5^{\circ} - 15^{\circ}$ $-x = -20^{\circ}$ $x = 20^{0}$ (ii) the value of $\angle APD$ is calculated as, $\angle APD = 3x + 15^{\circ}$ $= 3 \times 20^{0} + 15^{0}$ We get, $= 60^{\circ} + 15^{\circ}$ $=75^{\circ}$ (iii) The value of \angle BPD is calculated as, $\angle BPD = 180 - \angle BPC$ $= 180^{\circ} - (4x - 5^{\circ})$ $= 180^{\circ} - (4 \times 20^{\circ} - 5^{\circ})$ $= 180^{\circ} - 80^{\circ} + 5^{\circ}$ We get, $= 105^{\circ}$ (iv) The value of \angle BPC is calculated as, $\angle BPC = (4x - 5^0)$ $= (4 \times 20^{0} - 5^{0})$ We get, $= 80^{\circ} - 5^{\circ}$ $=75^{0}$

3. The given diagram, shows two adjacent angles AOB and AOC, whose exterior sides are along the same straight line. Find the value of x.

Solution:

Here, the exterior arms of the adjacent angles are in a straight line, Hence, the adjacent angles are supplementary $\angle AOB + \angle AOC = 180^{\circ}$ $68^{\circ} + (3x - 20^{\circ}) = 180^{\circ}$ $68^{\circ} + 3x - 20^{\circ} = 180^{\circ}$ $3x = 180^{\circ} + 20^{\circ} - 68^{\circ}$ $3x = 200^{\circ} - 68^{\circ}$ We get, $3x = 132^{\circ}$ $x = 132^{\circ} / 3$ $x = 44^{\circ}$

4. Each figure given below shows a pair of adjacent angles AOB and BOC. Find whether or not the exterior arms OA and OC are in the same straight line.(i)

The sum of adjacent angles AOB and $COB = 180^{\circ}$

Hence, $\angle AOB + \angle COB = 180^{\circ}$ $(90^{\circ} - x) + (90^{\circ} + x) = 180^{\circ}$ $90^{0} - x + 90^{0} + x = 180^{0}$ We get, $180^{\circ} = 180^{\circ}$ The exterior arms OA and OC are in the same straight line (ii) $\angle AOB + \angle BOC = 97^{\circ} + 83^{\circ}$ $= 180^{\circ}$ The sum of adjacent angles AOB and BOC is 180° Hence, the exterior arms OA and OC are in the same straight line (iii) $\angle COB + \angle AOB = 88^{\circ} + 112^{\circ}$ We get, [which is not equal to 180°] $=200^{\circ}$ Hence, the exterior arms OA and OC are not in the same straight line

5. A line segment AP stands at point P of a straight line BC such that $\angle APB = 5x - 40^{\circ}$ and $\angle APC = x + 10^{\circ}$; find the value of x and angle APB.

Solution:

Given A line segment AP stands at P and $\angle APB = 5x - 40^{\circ}$ $\angle APC = x + 10^{\circ}$ 5x - 40° x + 10° В Р С (i) BPC is a straight line $\angle APB + \angle APC = 180^{\circ}$ $5x - 40^{\circ} + x + 10^{\circ} = 180^{\circ}$ $6x - 30^0 = 180^0$ $6x = 180^0 + 30^0$ We get, $6x = 210^{\circ}$

 $x = 210^{\circ} / 6$ x = 35° (ii) $\angle APB = 5x - 40^{\circ}$ = 5 × 35° - 40° We get, = 175° - 40° = 135°

EXERCISE 25(B)

1. Identify the pair of angles in each of the figure given below: adjacent angles, vertically opposite angles, interior alternate angles, corresponding angles or exterior alternate angles.

(c) (i) ∠1 and ∠10
(ii) ∠6 and ∠12
(iii) ∠8 and ∠10
(iv) ∠4 and ∠11
(v) ∠2 and ∠8

(vi) $\angle 5$ and $\angle 7$

Solution:

(a) (i) $\angle 2$ and $\angle 4$ = Adjacent angles

- (ii) $\angle 1$ and $\angle 8$ = Alternate exterior angles
- (iii) $\angle 4$ and $\angle 5$ = Alternate interior angles
- (iv) $\angle 1$ and $\angle 5$ = Corresponding angles
- (v) $\angle 3$ and $\angle 5$ = Allied angles
- (b) (i) $\angle 2$ and $\angle 7$ = Alternate interior angles
- (ii) $\angle 4$ and $\angle 8$ = Corresponding angles
- (iii) $\angle 1$ and $\angle 8$ = Alternate exterior angles
- (iv) $\angle 1$ and $\angle 5$ =Corresponding angles
- (v) $\angle 4$ and $\angle 7$ = Allied angles
- (c)(i) $\angle 1$ and $\angle 10$ = Corresponding angles
- (ii) $\angle 6$ and $\angle 12$ = Alternate exterior angles
- (iii) $\angle 8$ and $\angle 10$ = Alternate interior angles
- (iv) $\angle 4$ and $\angle 11$ = Alternate interior angles
- (v) $\angle 2$ and $\angle 8$ = Alternate exterior angles
- (vi) $\angle 5$ and $\angle 7$ = Vertically opposite angles

2. Each figure given below shows a pair of parallel lines cut by a transversal. For each case, find a and b, giving reasons.

(i)

(iv)

We get,	
$b = 120^{0}$	
and $a = 60^{\circ}$	{corresponding angles}
Hence, $a = 60^{\circ}$	
$b = 120^{0}$	
(iii) $a = 110^{0}$	[Vertically opposite angles]
$b = 180^{\circ} - a$	[Co-interior angles]
$= 180^{0} - a$	
$= 180^{\circ} - 110^{\circ}$	
We get,	
$=70^{0}$	
(iv) $a = 60^{\circ}$	[Alternate interior angles]
$b = 180^{\circ} - a$	[Co-interior angles]
$= 180^{\circ} - 60^{\circ}$	
We get,	
$= 120^{0}$	
(v) $a = 72^{\circ}$	[Alternate interior angles]
$\mathbf{b} = \mathbf{a}$	[Vertically opposite angles]
Hence, $b = 72^{0}$	

3. If $\angle 1 = 120^{\circ}$, find the measures of: $\angle 2$, $\angle 3$, $\angle 4$, $\angle 5$, $\angle 6$, $\angle 7$ and $\angle 8$. Give reasons.

Given

 $1 \parallel m \text{ and } p \text{ is their transversal and}$ $\angle 1 = 120^{0}$ $\angle 1 + \angle 2 = 180^{0}$ [Straight line angle] $120^{0} + \angle 2 = 180^{0}$ $\angle 2 = 180^{0} - 120^{0}$

We get, $\angle 2 = 60^{\circ}$ Therefore, $\angle 2 = 60^{\circ}$ But $\angle 1$ and $\angle 3$ [Vertically opposite angles] Hence, $\angle 3 = \angle 1 = 120^{\circ}$ Similarly, [Vertically opposite angles] $\angle 4 = \angle 2$ $\angle 4 = 60^{\circ}$ $\angle 5 = \angle 1$ [Corresponding angles] Hence, $\angle 5 = 120^{\circ}$ Similarly, $\angle 6 = \angle 2$ [Corresponding angles] $\angle 6 = 60^{\circ}$ $\angle 7 = \angle 5$ [Vertically opposite angles] Hence, $\angle 7 = 120^{\circ}$ [Vertically opposite angles] and $\angle 8 = \angle 6$ Hence, $\angle 8 = 60^{\circ}$ Therefore, the measures of angles are, $\angle 2 = 60^{\circ}$ $\angle 3 = 120^{\circ}$ $\angle 4 = 60^{\circ}$ $\angle 5 = 120^{\circ}$ $\angle 6 = 60^{\circ}$ $\angle 7 = 120^{\circ}$ and $\angle 8 = 60^{\circ}$

4. In the figure given below, find the measure of the angles denoted by x, y, z, p, q and r.

Solution:

(Linear pair of angles) $x = 180^{\circ} - 100^{\circ}$ $x = 80^{0}$ (Alternate exterior angles) $\mathbf{y} = \mathbf{x}$ $y = 80^{0}$ $z = 100^{\circ}$ (Corresponding angles) (Vertically opposite angles) $\mathbf{p} = \mathbf{x}$ $p = 80^{\circ}$ $q = 100^{\circ}$ (Vertically opposite angles) $\mathbf{r} = \mathbf{q}$ (Corresponding angles) $r = 100^{\circ}$ Therefore, the measures of angles are, $x = y = p = 80^{0}$ $q = r = z = 100^{\circ}$

5. Using the given figure, fill in the blanks.

 $\angle x = \dots;$ $\angle z = \dots;$ $\angle p = \dots;$ $\angle q = \dots;$ $\angle r = \dots;$ $\angle s = \dots;$

p = z (Vertically opposite angles) $= 60^{0}$ $q = 180^{0} - p (Linear pair of angles)$ $= 180^{0} - 60^{0}$ We get, $= 120^{0}$ $r = 180^{0} - x$ (Linear pair of angles) $= 180^{0} - 60^{0}$ We get, $= 120^{0}$ s = r (Vertically opposite angles) $s = r = 120^{0}$

6. In the given figure, find the angles shown by x, y, z and w. Give reasons.

7. Find a, b, c and d in the figure given below:

 $z = 75^{0}$ (Corresponding angles) Therefore, the angles are, $x = 105^{0}$, $y = 75^{0}$ and $z = 75^{0}$

EXERCISE 25(C)

1. In your note-book copy the following angles using ruler and a pair compass only. (i)

2. Keeping O as centre, draw an arc of any suitable radius, to cut the arms of the angle at points C and D

3. Keeping Q as centre, draw the arc of the same size as drawn for C and D. Let this arc line cuts line QR at point T

4. With the help of compasses, take the distance equal to distance between C and D; and then taking T as centre, draw an arc which cuts the earlier arc at point S.

5. Join QS and produce up to a suitable point P. Now, the obtained \angle PQR , is the angle equal to the given \angle AOB

(ii) Steps of Construction:

1. Draw a line EF, at a point E

2. Taking E as centre, draw an arc of any suitable radius, to cut the arms of the angle at points C and D

3. Taking Q as centre, draw an arc of the same size as drawn for points C and D. Let this arc cuts line QR at point T

4. With the help of compasses, take the distance equal to the distance between C and D; and then taking T as centre, draw an arc which cuts the earlier arc at point S 5. Join QS and produce up to a suitable point S. Now, the obtained \angle PQR is the angle equal to the the given \angle DEF

(iii) Steps of Construction:

1. Draw a line AB = QP at a point A

2. Taking Q as centre, draw an arc of any suitable radius, to cut the arms of the angle T and S

3. Taking A as centre, draw an arc of the same size as drawn for points T and S. Let this arc cuts the line AB at point D

4. With the help of compasses, take the distance equal to the distance between T and S; and then taking D as centre, draw an arc which cuts the earlier arc at point E

5. Join AE produced up to a suitable point C. The obtained \angle BAC is the angle equal to the given \angle PQR

1. Draw a line OA of any suitable length

2. Taking O as centre, draw an arc of any size to cut OA at point B

3. Now, taking B as centre, draw the same size arc, to cut the previous arc at point C

4. Join OC and produce up to a suitable point D. Then, the obtained \angle DOA is the angle of 60°

(ii) Steps of Construction:Constructing angle of 90⁰Let OA be the line and at point O, the angle of 90⁰ is to be drawn

- 1. Taking O as centre, draw an arc to cut the arm OA at point B
- 2. Taking B as centre, draw the same size arc to cut the previous arc at point C

3. Again with C as centre and with the same radius, draw one more arc to cut the previous arc at point D

4. Now, taking C and D as centres, draw two arcs of equal radii to cut each other at point E.

5. Join O and E. Then $\angle AOE = 90^{\circ}$ is obtained

(iii) Draw an angle of 90°, following the steps as in question (ii) and bisect it. Each angle so obtained will be 45°

(iv) Steps of Construction:

Constructing an angle of 30°

1. Draw an angle of 60° following the steps as drawn in question no.(i)

2. Now, bisecting this angle, we get two angles each of 30° . Therefore $\angle EOB = 30^{\circ}$

30° (v) Steps of Construction: Constructing an angle of 120° Δ

1. Taking centre as O on the line OA, draw an arc to cut this line at point C

2. Now, taking C as centre, draw a same size arc which cuts the first arc at point D

3. Taking D as centre, draw one more arc of same size which cuts the first arc at point E

4. Join OE and produce it up to point B. Now, the $\angle AOB$ is the obtained angle whose measure is 120°

3. Draw line AB = 6 cm. Construct angle $ABC = 60^{\circ}$. Then draw the bisector of angle ABC.

Solution:

Steps of Construction: 1. Draw a line segment AB of length 6 cm

2. Using compass construct $\angle CBA = 60^{\circ}$

3. Bisect \angle CBA, using compass, take any radius which meet line AB and BC at points E and F

4. Now, with the help of compass take radius more than $\frac{1}{2}$ of EF and draw two arcs from point E and F, where both the arcs intersects at point G, proceed BG towards D. Now the \angle DBA is bisector of \angle CBA

4. Draw a line segment PQ = 8 cm. Construct the perpendicular bisector of the line segment PQ. Let the perpendicular bisector drawn meet PQ at point R. Measure the lengths of PR and QR. Is PR = QR? Solution:

Steps of Construction:

1. Taking P and Q as centres, draw arcs on both sides of PQ with equal radii. The radius should be more than half the length of PQ

2. Let these arcs cut each other at point R and RS

3. Now, join RS which cuts PQ at point D

Now, RS = PQ. Also $\angle POR = 90^{\circ}$

Therefore, the line segment RS is the perpendicular bisector of PQ as it bisects PQ at point P and it also perpendicular to PQ. Now, on measuring the length PR = 4 cmQR = 4 cmSince, PR = QR = 4 cm Therefore, PR = QR

5. Draw a line segment AB = 7 cm. Mark a point AB such that AP = 3 cm. Draw perpendicular on to AB at point P. **Solution:**

1. Draw a line segment AB of length 7 cm

- 2. Mark a point on AB such that, AB AP = 3 cm
- 3. From point P, cut arc on outside of AB, and mark them as point E and F

4.Now, from point E and F cut arcs on both side intersecting each other at point C and D

- 5. Join point P, C and D
- 6. Which is the required perpendicular

6. Draw a line segment AB = 6.5 cm. Locate a point P that is 5 cm from A and 4.6 cm from B. Through the point P, draw a perpendicular on to the line segment AB. Solution:

Steps of Construction:

(i) Draw a line segment AB of length 6.5 cm

(ii) Taking radius as 5 cm and with centre A, draw an arc and taking radius as 4.6 cm and with centre B, draw another arc which intersects the first arc at point P

Now, P is the required point

(iii) Taking centre A and a suitable radius, draw an arc which intersect AB at points E and F

(iv) Now, taking E and F as centres and radius greater than half of EF, draw the arcs which intersect each other at point Q

- (v) Join PQ which intersect AB at point D
- (vi) Now, PD is perpendicular to AB

EXERCISE 25(D)

1. Draw a line segment OA = 5 cm. Use set-square to construct angle $AOB = 60^{\circ}$, such that OB = 3 cm. Join A and B; then measure the length of AB. Solution:

The length of AB = 4.4 cm (approximately)

2. Draw a line segment OP = 8 cm. Use set-square to construct $\angle POQ = 90^{\circ}$; such that OQ = 6 cm. Join P and Q; then measure the length of PQ. Solution:

Measuring the length of PQ = 10 cm

3. Draw $\angle ABC = 120^{\circ}$. Bisect the angle using ruler and compasses. Measure each angle so obtained and check whether or not the new angles obtained on bisecting

∠ABC are equal. Solution:

Each angle measure = 60° Yes, the angles obtained on bisecting $\angle ABC$ are equal

4. Draw $\angle PQR = 75^{\circ}$ by using set-squares. On PQ mark a point M such that MQ = 3 cm. On QR mark a point N such that QN = 4 cm. Join M and N. Measure the length of MN. Solution:

The length of MN = 4.3 cm