

EXERCISE 28(B)

1. Fill in the blanks:				
In case of regular polygon, with				
Number of sides	Each exterior an	Each exterior angle		
(i) 6	•••••	••••••		
(ii) 8	•••••	36 ⁰ 20 ⁰		
(iii)	36 ⁰			
(iv)	20 ⁰			
(v)	••••••	•••••		
(vi)	•••••	•••••		
Solution:		-		
Number of sides	Each exterior angle	Each	interior angle	
(i) 6	60^{0}	0.0	120^{0}	
(ii) 8	450		1350	
(iii) 10	360		144^{0}	
(iv) 18	20^{0}		160^{0}	
(v) 8	45^{0}		1350	
(vi) 24	15 ⁰		165^{0}	

(i) Each exterior angle = $360^{\circ} / 6$ $= 60^{\circ}$ Each interior angle = $180^{\circ} - 60^{\circ}$ $= 120^{\circ}$ (ii) Each exterior angle = $360^{\circ} / 8$ $=45^{\circ}$ Each interior angle = $180^{\circ} - 45^{\circ}$ $= 135^{\circ}$ (iii) Given that, each exterior angle = 36° So, number of sides = $360^{\circ} / 36^{\circ}$ = 10 sides Each interior angle = $180^{\circ} - 36^{\circ}$ $= 144^{0}$ (iv) Given that, each exterior angle = 20° Hence, number of sides = $360^{\circ} / 20^{\circ}$ = 18 sides Each interior angle = $180^{\circ} - 20^{\circ}$ $= 160^{\circ}$ (v) Given that, each interior angle = 135° Hence, exterior angle = 180° - 135°

Selina Solutions Concise Mathematics Class 6 Chapter 28 Polygons

= 45° Therefore, number of sides = $360^{\circ} / 45^{\circ}$ = 8 sides (vi) Given that, each interior angle = 165° Hence, exterior angle = $180^{\circ} - 165^{\circ}$ = 15° Therefore, the number of sides = $360^{\circ} / 15^{\circ}$ = 24 sides

2. Find the number of sides in a regular polygon, if its each interior angle is:

```
(i) 160^{\circ}
(ii) 150^{\circ}
Solution:
(i) 160^{\circ}
Let the number of sides of a regular polygon = n
Each interior angle = 60^{\circ}
The sum of interior angle of polygon can be calculated as,
(2n-4) \times 90^0 = 160^0 \times n
180^{\circ}n - 360^{\circ} = 160^{\circ}n
180^{0}n - 160^{0}n = 360^{0}
20^{0}n = 360<sup>0</sup>
n = 360^{\circ} / 20^{\circ}
We get,
n = 18
Hence, the number of sides = 18
(ii) 150<sup>0</sup>
Let us consider the number of sides of regular polygon be n
The sum of the interior angle of polygon = (2n - 4) \times 90^{\circ}
Each interior angle = 150^{\circ}
The sum of the interior angle of polygon can be calculated as,
(2n-4) \times 90^0 = 150^0 \times n
180^{\circ}n - 360^{\circ} = 150^{\circ}n
180^{0}n - 150^{0}n = 360^{0}
30^{0}n = 360^{0}
n = 360^{\circ} / 30^{\circ}
We get,
n = 12
Hence, the number of sides = 12
```


3. Find number of sides in a regular polygon, if its each exterior angle is:

(i) 30° (ii) 36° Solution: (i) 30° Let us assume the number of sides be n Each exterior angle = 30° Each exterior angle of polygon = 360° / n Now, we have $360^{\circ} / n = 30^{\circ}$ $n = 360^{\circ} / 30^{\circ}$ We get, n = 12 Hence, the number of sides = 12(ii) 36° Let us assume the number of sides be n Each exterior angle = 36° Each exterior angle of polygon = $360^{\circ} / n$ Now, we have $360^{\circ} / n = 36^{\circ}$ $n = 360^{\circ} / 36^{\circ}$ We get, n = 10Hence, the number of sides = 10

4. Is it possible to have a regular polygon whose each interior angle is: (i) 135⁰

```
(i) 155

(ii) 155<sup>0</sup>

Solution:

(i) 135<sup>0</sup>

Let the number of sides of regular polygon be n

The sum of the interior angle of polygon = (2n - 4) \times 90^{0}

Each interior angle = 135^{0}

The sum of interior angle of polygon can be calculated as,

(2n - 4) \times 90^{0} = 135^{0} \times n

180^{0}n - 360^{0} = 135^{0}n

180^{0}n - 135^{0}n = 360^{0}

45^{0}n = 360^{0}

n = 360^{0} / 45^{0}
```


We get, n = 8Since, it is a whole number Therefore, it is possible to have a regular polygon whose interior angle is 135° (ii) 155⁰ Let the number of sides of a regular polygon is n The sum of the interior angle of polygon is $(2n - 4) \times 90^{\circ}$ Each interior angle = 155° The sum of the interior angle of polygon can be calculated as, $(2n-4) \times 90^0 = 155^0 \times n$ $180^{\circ}n - 360^{\circ} = 155^{\circ}n$ $180^{\circ}n - 155^{\circ}n = 360^{\circ}$ $25^{\circ}n = 360^{\circ}$ $n = 360^{\circ} / 25^{\circ}$ We get, n = 72 / 5Since, it is not a whole number Therefore, it is not possible to form a regular polygon whose interior angle is 155°

5. Is it possible to have a regular polygon whose each exterior angle is:

(i) 100° (ii) 36° Solution: (i) 100° Let the number of sides be n Each exterior angle = 100° Each exterior angle of a polygon is calculated as, $360^{\circ}/n$ So. $360^{\circ} / n = 100^{\circ}$ $n = 360^{\circ} / 100^{\circ}$ We get, n = 18 / 5Since, it is not a whole number Therefore, it is not possible to form a regular polygon (ii) 36° Let us consider the number of sides be n Each exterior angle = 36° Each exterior angle of polygon = 360° / n

So, $360^{0} / n = 36^{0}$ $n = 360^{0} / 36^{0}$ We get, n = 10Since, it is a whole number Therefore, it is possible to form a regular polygon

6. The ratio between the interior angle and the exterior angle of a regular polygon is 2: 1. Find:

- (i) each exterior angle of this polygon.
- (ii) number of sides in the polygon.

Solution:

(i) Given

Interior angle: exterior angle = 2:1

Let us assume the interior angle = $2x^0$ and the exterior angle = x^0

The sum of the interior angle and exterior angle is 180° Hence,

 $2x^{0} + x^{0} = 180^{0}$ $3x = 180^{0}$ $x = 180^{0} / 3$ We get, $x = 60^{0}$ Therefore, each exterior angle = 60^{0} (ii) Let us assume the number of sides be n Each exterior angle = 60^{0} Each exterior angle of polygon = 360^{0} / n So, 360 / n = 60^{0}

Selina Solutions Concise Mathematics Class 6 Chapter 28 Polygons

 $n = 360^{\circ} / 60^{\circ}$ We get, n = 6 Hence, the number of sides = 6

