

Exercise Solutions

Question 1: Find the energy, the frequency and the momentum of an X-ray photon of wavelength 0.10 nm.

Solution:

Wavelength of X-rays = 0.10 nm.

We know, $E = hc/\lambda$

Where, Velocity of light = c = 3×10^8 m/s Planks constant = h = 6.63×10^{-34} J-s Wavelength of X-rays = λ = 0.10 x 10⁻⁹ m (given)

 $E = [6.63 \times 10^{-34} \times 3 \times 10^{8}]/[0.10 \times 10^{-9}] = 1.98 \times 10^{-15}$ Joules/photon

Also, the frequency can be calculated using below formula:

 $\gamma = c/\lambda = [3 \times 10^8]/[0.10 \times 10^{-9}] = 3 \times 10^{18}$ Hertz

Find momentum: $p = h/\lambda = [6.63 \times 10^{-34}]/[0.10 \times 10^{-9}] = 6.626 \times 10^{-24} \text{ kg ms}^{-1}.$

Question 2: Iron emits K_{α} X-ray of energy 6.4 keV and calcium emits K_{α} X-ray of energy 3.69 keV. Calculate the times taken by an iron K_{α} photon and a calcium K_{α} photon to cross through a distance of 3 km.

Solution:

Let "t" be the time taken each of those rays to travel a distance of 3 Km.

We know, time = distance/speed

=> t = [3x10³]/[3x10⁸] = 10⁻⁵ s = 10 μs

Both the K_{α} photon and X-ray photon will take the same i.e. $10 \mu s$

Question 3: Find the cutoff wavelength for the continuous X-rays coming from an X-ray tube operating at 30 kV.

Solution:

Cutoff wavelength = λ = hc/eV = [1242 eV-nm]/[ex30x10³] = 414 x 10⁻⁴ nm

Question 4: What potential difference should be applied across an X-ray tube to get X-ray of wavelength not less than 0.10 nm? What is the maximum energy of a photon of this X-ray in joule?

Solution:

We know, $\lambda = hc/eV$

Or V = hc/e λ = [6.63 x 10⁻³⁴ x 3 x10⁸]/[1.6x10⁻¹⁹x10⁻¹⁰] = 12.4 KV

Now, Maximum energy of photon of wavelength λ = 0.10 nm is

 $E = hc/\lambda = [6.63 \times 10^{-34} \times 3 \times 10^{8}]/[0.10 \times 10^{-9}] = 1.98 \times 10^{-15}$ Joules/photon

Question 5: The X-ray coming from a Coolidge tube has a cutoff wavelength of 80 pm. Find the kinetic energy of the electrons hitting the target.

Solution:

We know, $E = hc/\lambda = [1242 \text{ eV-nm}]/[80x10^{-3}] = 15.525 \text{ x} 10^3 \text{ eV} = 15.5 \text{ KeV}(approx..)$

Question 6: If the operating potential in an X-ray tube is increased by 1%, by what percentage does the cut-off wavelength decrease?

Solution:

If the operating voltage is increased by 1%, then the new operating voltage, say v' will be,

V' = V + V/100 = 1.01 V

Cutoff wavelength (λ ') in increasing the operation voltage is

 $\lambda' = (h/1.01) V = \lambda/1.01$

Therefore, difference in wavelength is $\lambda' - \lambda/1.01 = (0.01)/1.01\lambda$

Now, Percentage change in the wavelength:

 $(0.01)/1.01\lambda \times \lambda \times 100 = 1/1.01 = 0.9901 = 1\%$ (approx)

Question 7: The distance between the cathode (filament) and the target in an X-ray tube is 1.5 m. If the cutoff wavelength is 30 pm, find the electric field between the cathode and the target.

Solution:

The distance between the cathode (filament) and the target in an X-ray tube is 1.5 m. If the cutoff wavelength is 30 pm.

We know, $E = hc/\lambda$

= $[6.63 \times 10^{-34} \times 3 \times 10^{8}]/[30 \times 10^{-12}] = 41.4 \times 10^{3} \text{ eV}$

Now, Electric field = $V/d = [41.4 \times 10^3]/1.5 = 27.6 \text{ kVm}^{-1}$.

Question 8: The short-wavelength limit shifts by 26 pm when the operating voltage in an X-ray tube is increased to 1.5 times the original value. What was the original value of the operating voltage?

Solution: ming AP When the operating voltage of the X-ray tube is increased to 1.5 times

```
we have, \lambda' = \lambda - 26
where \lambda = initial wavelength and \lambda' = new wavelength
```

Also, we have $E = hc/\lambda$

or eV = hc/λ

Where V = operating initial potential

 $\lambda = hc/eV$

Consider V' be the new operating voltage, then

 $\lambda V = \lambda' V' = (\lambda - 26) \times 1.5 V$

 $=> 0.5\lambda = 26 \times 1.5$

 $=> \lambda = 78 \text{ pm}$

Question 9: The electron beam in a color TV is accelerated through 32 kV and then strikes the screen. What is the wavelength of the most energetic X-ray photon?

Solution:

 $E = hc/\lambda$

Or $\lambda = hc/E$

Given: Potential across the X-ray Tube, V = 32kV

 $=> \lambda = hc/E = [1242x10^{-9}]/[32x10^{3}] = 38.8 pm$

Question 10: When 40 kV is applied across an X-ray tube, X-ray is obtained with a maximum frequency of 9.7×10^{18} Hz. Calculate the value of Planck constant from these data.

Solution:

Wavelength of X-ray = λ = hc/eV(1)

We know, $\gamma = c/\lambda$, using in (1), we get

h = eV/ γ = [40x10³]/[9.7x10¹⁸] x e = 4.12 x 10⁻¹⁵ eVs

Question 11: An X-ray tube operates at 40 kV. Suppose the electron converts 70% of its energy into a photon at each collision. Find the lowest three wavelengths emitted from the tube. Neglect the energy imparted to the atom with which the electron collides.

Solution:

Energy utilized by the electron = E = 70% energy into a photon

=> E = 70/100 x 40 x 10³ eV = 28 x 10³ eV

Wavelength of the X-ray = λ = hc/eV

 $= [1242 \times 10^{-9}]/[28 \times 10^{3}]$

= 44.35 pm

For the 2nd wavelength (which is 70% of leftover energy)

E = 70/100 x (40-28) x 10³ eV = 8.4 x 10³ eV

Wavelength of the X-ray = λ = hc/eV

 $= [1242x10^{-9}]/[8.4x10^{3}]$

= 148 pm

Similarly, For the 3rd wavelength:

E = 70/100 x (12-8.4) x 10³ eV = 25.2 x 10² eV

Wavelength of the X-ray = λ = hc/eV

 $= [1242x10^{-9}]/[25.2x10^{2}]$

= 493 pm

Question 12: The wavelength of K_{α} X-ray of tungsten is 21.3 pm. It takes 11.3 keV to knock out an electron from the L shell of a tungsten atom. What should be the minimum accelerating voltage across an X-ray tube having tungsten target which allows production of K_{α} X-ray?

Solution:

Energy required to knock out an electron from L-shell = E_L = 11.3 KeV Wavelength of X-ray = 21.3 pm Voltage = 11.3 kV

The energy gap between K and L shell,

 $E_{\rm K} - E_{\rm L} = [1242 \times 10^{-9}]/[21.3 \times 10^{-12}] = 58.309 \text{ KeV}$

E_k = 11.3 + 58.309 = 69.609 KeV

The accelerating voltage across the X-ray tube for the production of K_{α} X-ray is V_k = 69.609 KeV

Question 13: The K_{β} X-ray of argon has a wavelength of 0.36 nm. The minimum energy needed to ionize an argon atom is 16 eV. Find the energy needed to knock out an electron from the K shell of an argon atom

Solution:

Energy of K_{β} x-ray of argon, E = $[1242x10^{-9}]/[0.36x10^{-9}] = 3450 \text{ eV}$

[Given: Wavelength of K_{β} X-ray of argon = 0.36 nm]

Energy needed to knock out an electron from K shell can be calculated as:

E_k = 3450 + 16 eV

E_k = 3.47 KeV (approx.)

Question 14: The K_{α} X-rays of aluminum (Z = 13) and zinc (Z = 30) have wavelengths 887 pm and 146 pm respectively. Use Moseley's law $\sqrt{v} = a(Z - b)$ to find the wavelength of the K_{α} X-ray of iron (Z = 26).

Solution:

Let γ_1 and γ_2 are the frequencies of K_{α} X-rays of aluminum and zinc respectively

So, $\gamma_1 = [3x10^8]/[887 \times 10^{-12}] = 33.82 \times 10^{16} \text{ Hz}$

and $\gamma_2 = [3x10^8]/[146 \times 10^{-12}] = 2.055 \times 10^{18} \text{ Hz}$

Again,

√γ = a(Z - b)

For aluminum:

 $5.815 \times 10^8 = a(13 - b) \dots (a)$

For Zinc:

 $1.4331 \times 10^9 = a(30 - b) \dots(a)$

Dividing above equations, we get

 $(13-b)/(30-b) = [5.815 \times 10^8]/[1.4331 \times 10^9] = 0.4057$

=> (13-b)/(30-b) = 0.4057

=> (13-b)0.4057 = (30-b)

=> b = 1.3949

(a)=> a = $[5.815 \times 10^8]/(13-1.3949) = 5 \times 10^7$

Now, let us find the wavelength of the K_{α} X-ray of iron:

Frequency of the iron is given as $\sqrt{\gamma} = (5 \times 10^7)(26 - 1.39) = 123.05 \times 10^7$

or $\gamma = 5.1413 \times 10^{14}$

We know, $\gamma = c/\lambda$

or $\lambda = c/\gamma = [3x10^8]/[5.1413 \times 10^{14}] = 198 \text{ pm}$

Question 15: A certain element emits K_{α} X-ray of energy 3.69 keV. Use the data from the previous problem to identify the element.

Solution:

Energy of K_{α} X-rays= 3.69 KeV (Given)

Using formula to find the Wavelength, or $\lambda = hc/eV$

 $=>\lambda = [1242x10^{-9}]/[3690] = 0.34 \times 10^{-9} m$

[Because 3.69 KeV = 3690 eV]

Using Moseley's law, $\forall \gamma = a(Z - b) \dots (1)$

Where $\gamma = c/\lambda$

 $\sqrt{\gamma} = \sqrt{c/\lambda} = \sqrt{[3x10^8]}/\sqrt{[0.34x10^{-9}]} = 9.39 \times 10^8$

 $(1) = 9.39 \times 10^8 = (5 \times 10^7)(Z - 1.39)$

[Note: Used values of a and b from previous problem]

=> z = 20.17 = 20 (approx)

Atomic number (Z) = 20

Therefore, element with Atomic number 20 is calcium (Ca).

Question 16: The K_{β} X-rays from certain elements are given below. Draw a Moseley-type plot of \sqrt{v} versus Z for K_{β} radiation.

Element	Ne	Р	Са	Mn	Zn	Br
Energy(KeV)	0.858	2.14	4.02	6.51	9.57	13.3

Solution:

Using energy frequency relation to find the value of v.

i.e. Frequency = Energy/h

Where h = Planck's constant and energy in KeV.

The required graph is:

Question 17: Use Moseley's law with b = 1 to find the frequency of the K_a X-ray of La (Z = 57) if the frequency of the K_a X-ray of Cu (Z = 29) is known to be 1.88×10^{16} Hz.

Solution:

Using Moseley's law, $\sqrt{v} = a(Z - b) \dots (1)$

Where $v = c/\lambda$

Given b = 1

Now,

$$\frac{\nu_{La}}{\nu_{Cu}} = (\frac{Z_{La} - 1}{Z_{Cu} - 1})^2$$

$$\nu_{La} = 1.88 \times 10^{18} (\frac{Z_{La} - 1}{Z_{Cu} - 1})^2$$

Given: Z_{La} = 57 and Z_{Cu} = 29

=>
$$v_{La} = 1.88 \times 10^{18} ((57-1)/(29-1))^2 = 7.52 \times 10^{18}$$

=> v_{La} = 7.52 x 10¹⁸ Hz

Question 18: The K_{α} and K_{β} X-rays of molybdenum have wavelengths 0.71 angstrom and 0.63 angstrom respectively. Find the wavelength of L_{α} X-ray of molybdenum.

Solution: The K_{α} and K_{β} X-rays of molybdenum have wavelengths 0.71 angstrom and 0.63 angstrom respectively.

Let λ_1 = 0.71 angstrom and λ_2 = 0.63 angstrom

To find: Wavelength of L_{α}

Energy of K_{α} x-rays is given by: $K_{\alpha} = E_{K} - E_{L}$

Energy of K_{β} is given by: $K_{\beta} = E_{K} - E_{M}$ and

Energy of L_{α} is given by: $L_{\alpha} = E_{K} - E_{M}$

Relating above equations, we have

 $L_{\alpha} = K_{\alpha} - K_{\beta}$

 $= [3x10^8]/[0.63x10^{-10}] - [3x10^8]/[0.71x10^{-10}]$

or $L_{\alpha} = 0.536 \times 10^{18} \text{ Hz}$

We know, $\lambda = c/v = (3x10^8)/(0.536x10^{18}) = 5.6$ angstrom.

Question 19: The wavelengths of K_{α} and L_{α} X-rays of a material are 21.3 pm and 141 pm respectively. Find the wavelength of K_{β} X-ray of the material.

Solution:

The wavelengths of K_{α} and L_{α} X-rays of a material are 21.3 pm and 141 pm respectively.

Let E_1 , E_2 and E_3 are the energies of K_{α} , L_{α} and K_{β} .

Using all three relations, we have

 $E_3 = E_1 + E_2$

 $= E_3 = \frac{1242}{[21.3x10^{-3}]} + \frac{1242}{[141x10^{-5}]}$

 $= 58.309 \times 10^3 + 8.8085 \times 10^3$

= 67.118 x 10³ eV

Now, Find the wavelength of K_{β} X-ray of the material:

Using relation,

 $\lambda = hc/E = (1242)/(67.118 \times 10^3) = 18.5 \text{ pm}.$

Question 20: The energy of a silver atom with a vacancy in K shell is 25.31 keV, in L shell is 3.56 keV and in M shell is 0.530 keV higher than the energy of the atom with no vacancy. Find the frequency of K_{α} , L_{β} and L_{α} X-rays of silver.

Solution:

Let E_1 , E_2 and E_3 are the energies of K shell, L shell and M shell.

So, E_1 = 25.31 KeV , E_2 = 3.56 keV and E_3 = 0.530 keV

Let $v_1,\,v_2$ and v_3 be the frequencies of $K_\alpha,\,L_\beta$ and L_α x-rays respectively.

K_{α} x-ray emitted when the transition takes place between I and k shells.

 $=> K_{\alpha} = E_1 - E_2 = h v_1$

or
$$v_1 = (E_1 - E_2)/h = (25.31 - 3.56)/(6.63 \times 10^{-34}) \times 1.6 \times 10^{-19} \times 10^3$$

= 5.25 x 10¹⁸ Hz

k_{β} x-ray is emitted when the transition takes place between k and m shells

 $= K_{\beta} = E_1 - E_3 = h v_2$

or $v_2 = (E_1 - E_3)/h = (25.31-0.53)/(6.63x10^{-34}) \times 1.6 \times 10^{-19} \times 10^3$

= 5.985 x 10¹⁸ Hz

$L_{\alpha}\,x\text{-}ray$ is emitted when the transition takes place between I and m shells

 $=> L_{\alpha} = E_2 - E_3 = h v_3$

or $v_3 = (E_2 - E_3)/h = (3.56-0.53)/(6.63 \times 10^{-34}) \times 1.6 \times 10^{-19} \times 10^3$

= 7.32 x 10¹⁷ Hz