

Exercise Solutions

Question 1: Assume that the mass of a nucleus is approximately given by $M = Am_p$ where A is the mass number. Estimate the density of matter in kgm⁻³ inside a nucleus. What is the specific gravity of nuclear matter?

Solution:

Density = Mass/Volume ...(1)

Mass of nucleus(M) = Am_p (Given)

Mass of proton = m_p = 1.007276 μ

 μ = atomic mass unit = 1.6605 x 10⁻²⁷ kg

Now, Radius of nucleus = $R = R_0 A^{(1/3)}$

= 1.1 x 10⁻¹⁵ A^(1/3) m

Volume = $(4/3) \pi R^3 = (4/3) \pi x R_0^3 A^{(1/3)}]^3 = (4/3)\pi R_0^3 A^{(1/3)}$

(1)=> Density = $[Ax1.007276 x 1.6605 x 10^{-27}]/[(4/3)\pi R_0^3 A]$

= 3.00006 x 10¹⁷ kg m⁻³

Specific gravity of nuclear matter = Density/1000 = = 3.00006×10^{14} .

Question 2: A neutron star has a density equal to that of the nuclear matter. Assuming the star to be spherical, find the radius of a neutron star whose mass is 4.0×10^{30} kg (twice the mass of the sun).

Solution:

Mass of star(M) = 4×10^{30} kg (Given) Density of nuclear matter(D) = 2.3×10^{17} kg/m³

Volume = Mass/Density = [4x10³⁰]/[2.3x10¹⁷] m³

= [4x10¹³]/2.3 m³

Again, Volume = $(4/3)\pi R^3$

Where, R = Radius of the neutron star

 $=> (4/3)\pi R^3 = 4x10^{13}]/2.3$

 $\Rightarrow R^3 = [3x10^{13}]/[2.3 \pi]$

=> R = 16.07 km

Question 3: Calculate the mass of an α -particle. Its binding energy is 28.2 MeV.

Solution:

```
Binding energy = 28.2 MeV (given)
```

Mass of proton = 1.007276 u Mass of neutron = 1.008665 u Where, Atomic mass unit = u = 1.6605402 × 10^{-27} kg

Now,

 ΔM = (number of proton x mass of proton + number of neutron x mass of neutron) - M

Where, M = mass of an alpha particle

```
\Delta M = (2 \times 1.007276 \text{ u} + 2 \times 1.008665 \text{ u}) - M \dots (1)
```

Also, Binding energy = ΔMc^2

 $=> \Delta Mc^2 = 28.2$

=> ∆M = 28.2/[931.5]

[Here c = 931.5 MeV/u]

=> ΔM = 0.030273 u ...(2)

From (1) and (2)

(2 x 1.007276 u + 2 x 1.008665 u) - M = 0.030273 u

M = 4.0016 u

Question 4: How much energy is released in the following reaction: ⁷Li + p $\rightarrow \alpha + \alpha$. Atomic mass of ⁷Li = 7.0160 u and that of ⁴He = 4.0026 u.

Solution:

Atomic mass of ${}^{7}Li = 7.0160 \text{ u}$ Atomic mass of ${}^{4}He = Mass$ of alpha particle = 4.0026 u Mass of proton = 1.007276 u

Mass defect (ΔM) = Mass of reactants - Mass of products

= [7.0160 + 1.007276] - 2 x 4.0026

=> ΔM = 0.018076 u

Now, energy release, $E = \Delta Mc^2 = 0.018076 \times 931.5 = 16.83 \text{ MeV}$

[Here c = 931.5 MeV/u]

Question 5: Find the binding energy per nucleon of ¹⁹⁷₇₉Au if its atomic mass is 196.96 u.

Solution:

Atomic mass of Au = 196.96 u Atomic Number of Au = Z = 79 Number of nucleons = A = 197 Number of neutrons = N = A - Z = 118

Now, Binding energy is

$$B = (Zm_p + Nm_n - M)c^2$$

Where, M = Atomic Mass m_n = mass of neutron m_p = mass of proton c = Speed of light = 931.5 MeV/u

=> B = [(79 x 1.007276+118x1.008665)-196.96] x 931.5 = 1525.12 MeV

Therefore, Binding energy per nucleon = 1525.12/197 = 7.741

Question 6: (a) Calculate the energy released if 238 U emits an α -particle.

(b) Calculate the energy to be supplied to ²³⁸U if two protons and two neutrons are to be emitted one by one. The atomic masses of ²³⁸U, ²³⁴Th and ⁴He are 238.0508 u, 234.04363 u and 4.00260 u respectively.

Solution:

When ^{238}U emits an $\alpha\text{-particle},$ the reaction is as follow,

 $U^{238} \rightarrow Th^{234} + He^{4}_{2}$

So, energy released is the product of c^2 and subtraction of mass of reactant and mass of products.

Here $c^2 = 931.5 \text{ MeV/u}$

Now,

 \Rightarrow E = $\Delta m c^2$

=> E = [238.0508 - (234.04363+4.00260)] x 931.5 = 4.2569 MeV

(b) When two protons and two neutrons are to be emitted one by one. The atomic masses of ²³⁸U, ²³⁴Th and ⁴He are 238.0508 u, 234.04363 u and 4.00260 u respectively.

Reaction will be,

 $U^{233} \rightarrow Th^{234} + 2n + 2p$

So, mass defect = $\Delta m = m(U^{233}) - m(Th^{234}) + 2(m_n) + 2(m_p)$

Where, m_n = mass of neutron = 1.008665 u and m_p = mass of proton = 1.007276 u

 $\Delta m = 238.0508 - [234.04363 + 2x1.008665 + 2x1.007276]$

Δm = 0.024712 u

So, energy released = $E = \Delta m c^2 = 0.024712 \times 931.5 = 23.02 \text{ MeV}$

Question 7: Find the energy liberated in the reaction 223 Ra -> 209 Pb + 14 C.

The atomic masses needed are as follows.

²²³ Ra	²⁰⁹ Pb	¹⁴ C
223.018u	208.981u	14.003u

Solution:

Given reaction is: 223 Ra -> 209 Pb + 14 C.

Energy = E = $[223.018u - (208.981u + 14.003u)]c^2$

= 0.034 x 931

= 31.65 MeV

Question 8: Show that the minimum energy needed to separate a proton from a nucleus with Z protons and N neutrons is

 $\Delta E = (M_{z-1}, N + M_H - M_Z, N) c^2$

Where M_Z , N = mass of an atom with Z protons and N neutrons in the nucleus and M_H = mass of a hydrogen atom. This energy is known as proton-separation energy.

Solution:

As hydrogen contains only protons, so we can write energy equation as follows:

 $E_{(Z,N)} \rightarrow E_{(Z-1,N)} + p_1$

 $=> E_{(Z,N)} -> E_{(Z-1,N)} + {}^{1}H_{1}$

So, minimum energy needed to separate a proton from a nucleus with Z protons and N neutrons is $\Delta E = (M_{z-1}, N + M_H - M_Z, N) c^2$

Question 9: Calculate the minimum energy needed to separate a neutron from a nucleus with Z protons and N neutrons in terms of the masses $M_{Z, N}$, $M_{Z, N-1}$ and the mass of the neutron.

Solution:

We know, energy released = Mass difference $x c^2$

The reaction is, $E_{Z,N} = E_{Z,N-1} + {}^{1}n_{0}$

The minimum energy needed to separate the neutron will be, $\Delta E = (M_{Z,N-1} + M_N - M_{Z,N}) \times c^2$

Question 10: ³²P beta-decays to ³²S. Find the sum of the energy of the antineutrino and the kinetic energy of the β -particle. Neglect the recoil of the daughter nucleus. Atomic mass of ³²P = 31.974 u and that of ³²S = 31.972 u.

Solution: The reaction will be $P^{32} \rightarrow S^{32} + {}_{1}V^{0} + {}_{-1}B^{0}$

The sum of the energy of the antineutrino and the kinetic energy of the β -particle:

- $E = m(P^{32}) m(S^{32}) \times c^2$
- = (31.974 31.972) x 931.5
- = 1.863 MeV
- Question 11: A free neutron beta-decays to a proton with a half-life of 14 minutes.
- (a) What is the decay constant?
- (b) Find the energy liberated in the process.

Solution:

(a) Decay constant:

Half-life of 14 minutes = 840 sec (Given)

We know, half life = $ln(2)/\lambda$

Where λ = decay constant

 $=> \ln(2)/\lambda = 840$ = 8.25 x 10⁻⁴ s⁻¹

(b) Find the energy liberated in the process:

 $E = [m_n - (m_p + m_\beta)] \times c^2$

Where, M_n = mass of Neutron = 1.008665 u M_p = mass of proton = 1.007276 u M_β = mass of β -particle = 0.0005486 u c = Speed of light = 931.5 MeV/u

=> E = [1.008665 - (1.007276 + 0.0005486)] x 931.5

= 0.78283 MeV

= 782.83 KeV

Question 12: Complete the following decay schemes.

(a)
$${}^{226}_{88}Ra \to \alpha$$
 +
(b) ${}^{19}_8O \to {}^{19}_9F$ +
(c) ${}^{25}_{12}Al \to {}^{25}_{12}Mg$ +

Solution:

(a) One α particle is produced so atomic number will decrease by 2 and the mass by 2, Resultant reaction:

 $^{226}_{88}$ Ra $\rightarrow ^{4}_{2}lpha + ^{222}_{86}$ Rn b) $^{19}_{8}O \rightarrow ^{19}_{9}F + \bar{e} + \bar{v}$ c) $^{25}_{13}$ Ar $\rightarrow ^{25}_{12}$ Mg + $e^{+} + v$

Question 13: In the decay 64Cu -> 64Ni + e^+ + v, the maximum kinetic energy carried by the positron is found to be 0.650 MeV.

(a) What is the energy of the neutrino which was emitted together with a positron of kinetic energy 0.150 MeV?

(b) What is the momentum of this neutrino in kg ms⁻¹? Use the formula applicable to a photon.

Solution:

(a) Energy the neutrino = 0.650 - K.E. of given positron

Maximum kinetic energy carried by the positron is found to be 0.650 MeV. (Given)

= 0.650 - 0.150

= 0.5 MeV

= 500 keV

(b) Momentum of this neutrino is

 $P = E/c = [500 \times 1.6 \times 10^{-19}]/3 \times 10^{8} \times 10^{3}$

= 2.67 x 10²² Kg m/s

Question 14: Potassium -40 can decay in three modes. It can decay by β^- -emission, β^+ -emission or electron capture.

(a) Write the equations showing the end products.

(b) Find the Q-value in each of the three cases. Atomic masses of ⁴⁰Ar₁₈, ⁴⁰K₁₉ and ⁴⁰Ca₂₀ are 39.9624 u,

39.9640 u and 39.9626 u respectively.

Solution:

(a) Decay of Potassium -40 by β^- -emission, β^+ -emission or electron capture:

$$_{19}\text{K}^{40} \rightarrow {}_{20}\text{Ca}^{40} + \beta^- + \bar{\text{v}}$$

$$_{19}{
m K}^{40}
ightarrow {}_{18}{
m Ar}^{40} + eta^+ + {
m v}$$

And,

$${}_{19}\mathrm{K}^{40} + e^-
ightarrow {}_{18}\mathrm{Ar}^{40} + \mathrm{v}$$

(b) We know, Q- value = [mass of reactants - Mass of products] c^2 Where c = 931.5 MeV/u

Now,

Q-value in β^- decay = [39.9640 - 39.9626] x 931.5 = 1.30141 MeV Q-value in β^+ decay = [39.9640 - (39.9626+2x0.005486)] x 931.5 = 0.4683 MeV Q-value in electron capture = [39.9640 - 39.9624] x 931.5 = 1.490 MeV

Question 15: Lithium (Z = 3) has two stable isotopes ⁶Li and ⁷Li. When neutrons are bombarded on lithium sample, electrons and α -particles are ejected. Write down the nuclear processes taking place.

Solution:

Given: Lithium (Z = 3) has two stable isotopes 6 Li and 7 Li.

$$egin{aligned} {}^6_8\mathrm{L}_i &+ n
ightarrow {}^7_3L_i \ {}^8_3L_i &
ightarrow {}^8_4\mathrm{Be} + ar{v} + e^- \ {}^8_4\mathrm{Be} &
ightarrow {}^2_2\mathrm{He} + {}^4_2\mathrm{He}
ightarrow {}^2_2rac{4}{2}\mathrm{He} \end{aligned}$$

Question 16: The masses of ¹¹C and ¹¹B are respectively 11.0114 u and 11.0093 u. Find the maximum energy a positron can have in the β^+ -decay of ¹¹C to ¹¹B.

Solution:

The maximum energy for the positron in the β^+ -decay = energy due to the mass defect (ΔM)

=> ΔM = [11.0114 – 11.0093] x 931 = 1.955 MeV

Question 17: ²²⁸Th emits an alpha particle to reduce to ²²⁴Ra. Calculate the kinetic energy of the alpha particle emitted in the following decay:

 228 Th -> 224 Ra* + α
 224 Ra* -> 224 Ra + γ (217 keV).
Atomic mass of 228 Th is 228.028726u, that of 224 Ra is 224.020196 u and that of 4 H₂ is 4.00260 u.

Solution:

Mass of ²²⁴Ra = 224.020196 x 931 + 0.217 = 208563.0195 MeV

K.E. of α particle = (mass of Th - mass of Ra - mass of alpha particle) x (speed of light)²

= (228.028726 x 931) - (208563.0195 + 4.00260 x 931)

= 5.304 MeV

Question 18: Calculate the maximum kinetic energy of the beta particle emitted in the following decay scheme:

 12 N -> 12 C* + e+ + v 12 C* -> 12 C + γ (4.43 MeV). The atomic mass of 12 N is 12.018613 u

Solution:

Given reaction are: ${}^{12}N \rightarrow {}^{12}C^* + e^+ + v$ ${}^{12}C^* \rightarrow {}^{12}C + \gamma$ (4.43 MeV).

Adding both the reactions, we get

 $^{12}N \rightarrow ^{12}C + e^{+} + v + \gamma$ (4.43 MeV).

Now, find K.E.max

Max K.E of β -particle = [(mass of ¹²N – mass of ¹²C) × c²] – 4.43Mev

= [12.018613 - 12] x 931 - 4.43

= 12.89 MeV

Question 19: The decay constant of ¹⁹⁷Hg₈₀ (electron capture to ¹⁹⁷Au₇₉) is 1.8×10^{-4} s⁻¹. (a) What is the half-life? (b) What is the average-life? (c) How much time will it take to convert 25% of this isotope of mercury into gold?

Solution:

```
(a) Half life = ln(2)/[decay constant]
```

 $= \ln(2)/[1.8 \times 10^{-4}]$

- = 3850.81 sec
- = 64 minutes (approx)
- (b) Average life = 1/[decay constant]

=1/[1.8 x 10⁻⁴]

- = 5555.56 sec
- = 92 minutes (approx.)

(c) Using relation, $A/A_0 = (1/2)^N$

where N = Number of half lives A= Activity of the substance A₀ = Initial activity

As per question,

Present activity = $(1 - 0.25) A_0 = 0.75 A_0$

 $=> (0.75A_0)/A_0 = (1/2)^N$

Taking "In" both the sides,

 $ln 0.75 = N \times ln(1/2)$

=> N = 1598.23 sec

Question 20: The half-life of ¹⁹⁸Au is 2.7 days.

(a) Find the activity of a sample containing 1.00 μ g of ¹⁹⁸Au.

(b) What will be the activity after 7 days? Take the atomic weight of ¹⁹⁸Au to 198 g mol⁻¹.

Solution:

The half-life of ¹⁹⁸Au is 2.7 days.

(a) Disintegration constant = $\lambda = 0.693/T_{1/2}$

= 0.693/[2.7x24x60x60]

= 2.97 x 10⁻⁶ s⁻¹

Let N be the number of atoms left undecayed. then

 $N = [1x10^{-6}x6.023x10^{23}]/198$

Activity, $A = \lambda N$

= 2.97 x 10⁻⁶ x [1x10⁻⁶x6.023x10²³]/198 Ci

= 0.244 Ci

(b) Using relation, $A/A_0 = (1/2)^N$

where N = Number of half lives A= Activity of the substance A₀ = Initial activity

Here, N = 2.592

 $A = (1/2)^{2.592} \times 0.244 \text{ Ci}$

=>A = 0.0404 Ci