

Exercise 13.1

1. If two angles of a quadrilateral are 40° and 110° and the other two are in the ratio 3 : 4, find these angles. Solution:

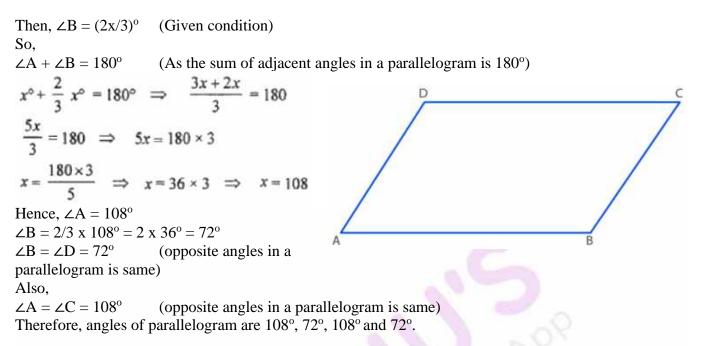
We know that, Sum of all four angles of a quadrilateral = 360° Sum of two given angles = $40^{\circ} + 110^{\circ} = 150^{\circ}$ So, the sum of remaining two angles = $360^{\circ} - 150^{\circ} = 210^{\circ}$ Also given, Ratio in these angles = 3:4Hence, Third angle = $(210^{\circ} \times 3)/(3 + 4)$ $= (210^{\circ} \times 3)/7$ $= 90^{\circ}$ And, Fourth angle = $(210^{\circ} \times 4)/(3 + 4)$ $= (210^{\circ} \times 4)/7$ $= 120^{\circ}$

2. If the angles of a quadrilateral, taken in order, are in the ratio 1 : 2 : 3 : 4, prove that it is a trapezium.

Given, In trapezium ABCD in which $\angle A : \angle B : \angle C : \angle D = 1 : 2 : 3 : 4$ We know, The sum of angles of the quad. ABCD = 360° $\angle A = (360^{\circ} \times 1)/10 = 36^{\circ}$ $\angle B = (360^{\circ} \times 2)/10 = 72^{\circ}$ $\angle C = (360^{\circ} \times 3)/10 = 108^{\circ}$ $\angle D = (360^{\circ} \times 4)/10 = 144^{\circ}$ Now, $\angle A + \angle D = 36^{\circ} + 114^{\circ} = 180^{\circ}$ Since, the sum of angles $\angle A$ and $\angle D$ is 180° and these are co-interior angles Thus, $AB \parallel DC$ Therefore, ABCD is a trapezium.

3. If an angle of a parallelogram is two-thirds of its adjacent angle, find the angles of the parallelogram. Solution:

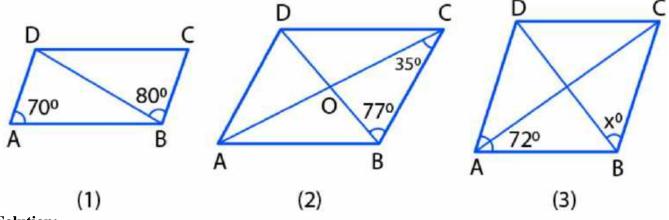
Here ABCD is a parallelogram. Let $\angle A = x^{\circ}$



4. (a) In figure (1) given below, ABCD is a parallelogram in which $\angle DAB = 70^{\circ}$, $\angle DBC = 80^{\circ}$. Calculate angles CDB and ADB.

(b) In figure (2) given below, ABCD is a parallelogram. Find the angles of the AAOD.

(c) In figure (3) given below, ABCD is a rhombus. Find the value of x.



Solution:

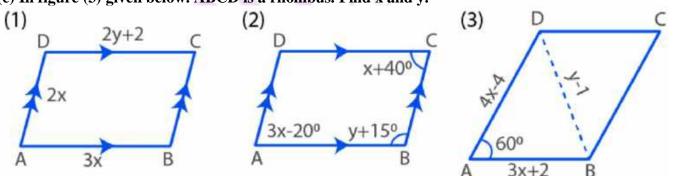
(a) Since, ABCD is a || gm We have, AB || CD $\angle ADB = \angle DBC$ (Alternate angles) $\angle ADB = 80^{\circ}$ (Given, $\angle DBC = 80^{\circ}$) Now, In $\triangle ADB$, we have $\angle A + \angle ADB + \angle ABD = 180^{\circ}$ (Angle sum property of a triangle) $70^{\circ} + 80^{\circ} + \angle ABD = 180^{\circ}$ $150^{\circ} + \angle ABD = 180^{\circ}$ $\angle ABD = 180^{\circ} - 150^{\circ} = 30^{\circ}$

 $x = \frac{1}{2} B = \frac{1}{2} x 108^{\circ} = 54^{\circ}$

ML Aggarwal Solutions for Class 9 Maths Chapter 13: Rectilinear Figures

```
Now, \angle CDB = \angle ABD
                                        (Since, AB || CD and alternate angles)
So,
\angle CDB = 30^{\circ}
Hence, \angle ADB = 80^{\circ} and \angle CDB = 30^{\circ}.
(b) Given, \angle BOC = 35^{\circ} and \angle CBO = 77^{\circ}
In \triangle BOC, we have
\angle BOC + \angle BCO + \angle CBO = 180^{\circ}
                                                   (Angle sum property of a triangle)
\angle BOC = 180^{\circ} - 112^{\circ} = 68^{\circ}
Now, in || gm ABCD
We have,
\angle AOD = \angle BOC
                              (Vertically opposite angles)
Hence, \angle AOD = 68^{\circ}.
(c) ABCD is a rhombus
                                         (Sum of adjacent angles of a rhombus is 180°)
So, \angle A + \angle B = 180^{\circ}
72^{\circ} + \angle B = 180^{\circ}
                                         (Given, \angle A = 72^{\circ})
\angle B = 180^{\circ} - 72^{\circ} = 108^{\circ}
Hence.
```

5. (a) In figure (1) given below, ABCD is a parallelogram with perimeter 40. Find the values of x and y.
(b) In figure (2) given below. ABCD is a parallelogram. Find the values of x and y.
(c) In figure (3) given below. ABCD is a rhombus. Find x and y.



Solution:

(a) Since, ABCD is a parallelogram So, AB = CD and BC = AD \Rightarrow 3x = 2y + 2 3x - 2y = 2 ... (i) Also, AB + BC + CD + DA = 40 \Rightarrow 3x + 2x + 2y + 2 + 2x = 40 7x + 2y = 40 - 2 7x + 2y = 38 ... (ii) Now, adding (i) and (ii) we get 3x - 2y = 2

7x + 2y = 38-----10x = 40 \Rightarrow x = 40/10 = 4 On substituting the value of x in (i), we get 3(4) - 2y = 212 - 2y = 22y = 12 - 2 \Rightarrow y = 10/2 = 5 Hence, x = 4 and y = 5(b) In parallelogram ABCD, we have $\angle A = \angle C$ (Opposite angles are same in || gm) $3x - 20^{\circ} = x + 40^{\circ}$ $3x - x = 40^{\circ} + 20^{\circ}$ $2x = 60^{\circ}$ $x = 60^{\circ}/2 = 30^{\circ} \dots (i)$ (Sum of adjacent angles in || gm is equal to 180°) Also, $\angle A + \angle B = 180^{\circ}$ $3x - 20^{\circ} + y + 15^{\circ} = 180^{\circ}$ $3x + y = 180^{\circ} + 20^{\circ} - 15^{\circ}$ $3x + y = 185^{\circ}$ $3(30^{\circ}) + y = 185^{\circ}$ [Using (i)] $90^{\circ} + y = 185^{\circ}$ $y = 185^{\circ} - 90^{\circ} = 95^{\circ}$ Hence. $x = 30^{\circ}$ and 95° (c) ABCD is a rhombus So, AB = CD3x + 2 = 4x - 43x - 4x = -4 - 2-x = -6 $\mathbf{x} = \mathbf{6}$ Now, in $\triangle ABD$ we have $\angle BAD = 60^{\circ} \text{ and } AB = AD$ $\angle ADB = \angle ABD$ So, $\angle ADB = (180^{\circ} - \angle BAD)/2$ $=(180^{\circ}-60^{\circ})/2$ $= 120^{\circ}/2 = 60^{\circ}$ As $\triangle ABD$ is an equilateral triangle, all the angles of the triangle are 60° Hence, AB = BD3x + 2 = y - 13(6) + 2 = y - 1(Substituting the value of x) 18 + 2 = y - 120 = y - 1

C

y = 20 + 1y = 21 Thus, x = 6 and y = 21.

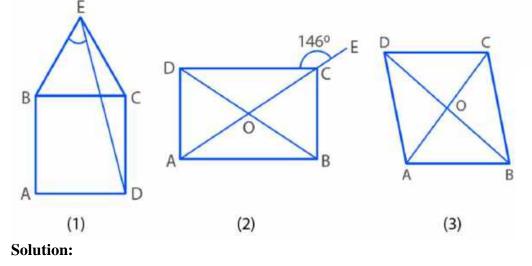
6. The diagonals AC and BD of a rectangle ABCD intersect each other at P. If $\angle ABD = 50^{\circ}$, find $\angle DPC$. Solution:

D Given, ABCD is a rectangle We know that the diagonals of rectangle are same and bisect each other So, we have AP = BP $\angle PAB = \angle PBA$ (Equal sides have equal opposite angles) $\angle PAB = 50^{\circ}$ (Since, given $\angle PBA = 50^{\circ}$) 500 Now, in $\triangle APB$ $\angle APB + \angle ABP + \angle BAP = 180^{\circ}$ $\angle APB + 50^{\circ} + 50^{\circ} = 180^{\circ}$ $\angle APB = 180^{\circ} - 100^{\circ}$ $\angle APB = 80^{\circ}$ Then, $\angle DPB = \angle APB$ (Vertically opposite angles) Hence, $\angle DPB = 80^{\circ}$

7. (a) In figure (1) given below, equilateral triangle EBC surmounts square ABCD. Find angle BED represented by x.

(b) In figure (2) given below, ABCD is a rectangle and diagonals intersect at O. AC is produced to E. If $\angle ECD = 146^{\circ}$, find the angles of the \triangle AOB.

(c) In figure (3) given below, ABCD is rhombus and diagonals intersect at O. If $\angle OAB : \angle OBA = 3:2$, find the angles of the \triangle AOD.

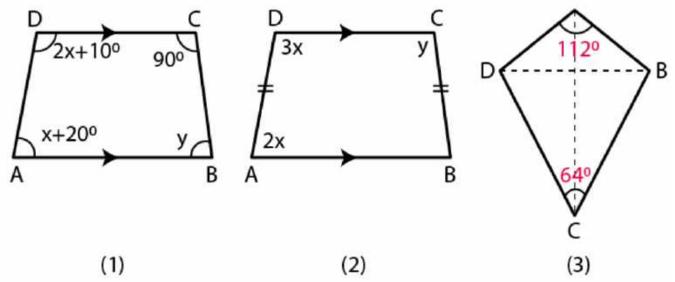


Since, EBC is an equilateral triangle, we have $EB = BC = EC \dots (i)$ Also, ABCD is a square So, $AB = BC = CD = AD \dots$ (ii) From (i) and (ii), we get $EB = EC = AB = BC = CD = AD \dots$ (iii) Now, in $\triangle ECD$ $\angle ECD = \angle BCD + \angle ECB$ $=90^{\circ}+60^{\circ}$ $= 150^{\circ} \dots (iv)$ Also, EC = CD[From (iii)] So, $\angle DEC = \angle CDE \dots (v)$ $\angle ECD + \angle DEC + \angle CDE = 180^{\circ}$ [Angles sum property of a triangle] $150^{\circ} + \angle DEC + \angle DEC = 180^{\circ}$ [Using (iv) and (v)] $2 \angle DEC = 180^{\circ} - 150^{\circ} = 30^{\circ}$ $\angle DEC = 30^{\circ}/2$ $\angle DEC = 15^{\circ} \dots (vi)$ Now, $\angle BEC = 60^{\circ}$ [BEC is an equilateral triangle] $\angle BED + \angle DEC = 60^{\circ}$ $x^{o} + 15^{o} = 60^{o}$ [From (vi)] $x = 60^{\circ} - 15^{\circ}$ $x = 45^{\circ}$ Hence, the value of x is 45° . (b) Given, ABCD is a rectangle $\angle ECD = 146^{\circ}$ As ACE is a straight line, we have $146^{\circ} + \angle ACD = 180^{\circ}$ [Linear pair] $\angle ACD = 180^{\circ} - 146^{\circ} = 34^{\circ} \dots (i)$ And, $\angle CAB = \angle ACD$ [Alternate angles] ... (ii) From (i) and (ii), we have $\angle CAB = 34^\circ \Rightarrow \angle OAB = 34^\circ \dots (iii)$ In **AAOB** AO = OB[Diagonals of a rectangle are equal and bisect each other] $\angle OAB = \angle OBA \dots (iv)$ [Equal sides have equal angles opposite to them] From (iii) and (iv), $\angle OBA = 34^{\circ} \dots (v)$ Now. $\angle AOB + \angle OBA + \angle OAB = 180^{\circ}$ $\angle AOB + 34^{\circ} + 34^{\circ} = 180^{\circ}$ [Using (3) and (5)] $\angle AOB + 68^{\circ} = 180^{\circ}$ $\angle AOB = 180^{\circ} - 68^{\circ} = 112^{\circ}$ Hence, $\angle AOB = 112^{\circ}$, $\angle OAB = 34^{\circ}$ and $\angle OBA = 34^{\circ}$

(c) Here, ABCD is a rhombus and diagonals intersect at O and $\angle OAB : \angle OBA = 3 : 2$ Let $\angle OAB = 2x^{\circ}$ Then, $\angle OBA = 2x^{\circ}$ We know that diagonals of rhombus intersect at right angle, So, $\angle OAB = 90^{\circ}$ Now, in $\triangle AOB$ $\angle OAB + \angle OBA = 180^{\circ}$ $90^{\circ} + 3x^{\circ} + 2x^{\circ} = 180^{\circ}$ $90^{\circ} + 5x^{\circ} = 180^{\circ}$ $5x^{\circ} = 180^{\circ} - 90^{\circ} = 90^{\circ}$ $x^{\circ} = 90^{\circ}/5 = 18^{\circ}$ Hence, $\angle OAB = 3x^{\circ} = 3 \times 18^{\circ} = 54^{\circ}$ OBA = $2x^{\circ} = 2 \times 18^{\circ} = 36^{\circ}$ and $\angle AOB = 90^{\circ}$

8. (a) In figure (1) given below, ABCD is a trapezium. Find the values of x and y.

(b) In figure (2) given below, ABCD is an isosceles trapezium. Find the values of x and y.
(c) In figure (3) given below, ABCD is a kite and diagonals intersect at O. If ∠DAB = 112° and ∠DCB = 64°, find ∠ODC and ∠OBA.



Solution:

(a) Given: ABCD is a trapezium $\angle A = x + 20^{\circ}, \angle B = y, \angle C = 92^{\circ}, \angle D = 2x + 10^{\circ}$ We have, $\angle B + \angle C = 180^{\circ}$ [Since AB || DC] $y + 92^{\circ} = 180^{\circ}$ $y = 180^{\circ} - 92^{\circ} = 88^{\circ}$ Also, $\angle A + \angle D = 180^{\circ}$ $x + 20^{\circ} + 2x + 10^{\circ} = 180^{\circ}$

 $3x + 30^{\circ} = 180^{\circ}$ $3x = 180^{\circ} - 30^{\circ} = 150^{\circ}$ $x = 150^{\circ}/3 = 50^{\circ}$ Hence, the value of $x = 50^{\circ}$ and $y = 88^{\circ}$. (b) Given: ABCD is an isosceles trapezium BC = AD $\angle A = 2x$, $\angle C = y$ and $\angle D = 3x$ Since, ABCD is a trapezium and AB || DC $\Rightarrow \angle A + \angle D = 180^{\circ}$ $2x + 3x = 180^{\circ}$ $5x = 180^{\circ}$ $x = 180^{\circ}/5 = 36^{\circ} \dots (i)$ Also, AB = BC and $AB \parallel DC$ So, $\angle A + \angle C = 180^{\circ}$ $2x + y = 180^{\circ}$ $2 \times 36^{\circ} + v = 180^{\circ}$ $72^{\circ} + y = 180^{\circ}$ $y = 180^{\circ} - 72^{\circ} = 108^{\circ}$ Hence, value of $x = 72^{\circ}$ and $y = 108^{\circ}$. (c) Given: ABCD is a kite and diagonal intersect at O. $\angle DAB = 112^{\circ} \text{ and } \angle DCB = 64^{\circ}$ As AC is the diagonal of kite ABCD, we have $\angle DCO = 64^{\circ}/2 = 32^{\circ}$ And, $\angle DOC = 90^{\circ}$ [Diagonal of kites bisect at right angles] In $\triangle OCD$, we have $\angle ODC = 180^{\circ} - (\angle DCO + \angle DOC)$ $= 180^{\circ} - (32^{\circ} + 90^{\circ})$ $= 180^{\circ} - 122^{\circ}$ $= 58^{\circ}$ In ΔDAB , we have $\angle OAB = 112^{\circ}/2 = 56^{\circ}$ $\angle AOB = 90^{\circ}$ [Diagonal of kites bisect at right angles] In $\triangle OAB$, we have $\angle OBA = 180^{\circ} - (\angle OAB + \angle AOB)$ $= 180^{\circ} - (56^{\circ} + 90^{\circ})$ $= 180^{\circ} - 146^{\circ}$ $= 34^{\circ}$ Hence, $\angle ODC = 58^{\circ}$ and $\angle OBA = 34^{\circ}$.

9. (i) Prove that each angle of a rectangle is 90°.

(ii) If the angle of a quadrilateral are equal, prove that it is a rectangle.

(iii) If the diagonals of a rhombus are equal, prove that it is a square.

(iv) Prove that every diagonal of a rhombus bisects the angles at the vertices. Solution:

(i) Given: ABCD is a rectangle To prove: Each angle of rectangle = 90° D С Proof: In a rectangle opposite angles of a rectangle are equal So, $\angle A = \angle C$ and $\angle B = \angle C$ But, $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ [Sum of angles of a quadrilateral] $\angle A + \angle B + \angle A + \angle B = 360^{\circ}$ $2(\angle A + \angle B) = 360^{\circ}$ $(\angle A + \angle B) = 360^{\circ}/2$ B A $\angle A + \angle B = 180^{\circ}$ [Angles of a rectangle] But, $\angle A = \angle B$ So, $\angle A = \angle B = 90^{\circ}$ Thus, $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$ Hence, each angle of a rectangle is 90°. (ii) Given: In quadrilateral ABCD, we have $\angle A = \angle B = \angle C = \angle D$ To prove: ABCD is a rectangle **Proof:** $\angle A = \angle B = \angle C = \angle D$ $\Rightarrow \angle A = \angle C$ and $\angle B = \angle D$ But these are opposite angles of the quadrilateral. So, ABCD is a parallelogram And, as $\angle A = \angle B = \angle C = \angle D$ A R Therefore, ABCD is a rectangle. (iii) Given: ABCD is a rhombus in which AC = BDTo prove: ABCD is a square Proof: Join AC and BD. D Now, in $\triangle ABC$ and $\triangle DCB$ we have $\angle AB = \angle DC$ [Sides of a rhombus] $\angle BC = \angle BC$ [Common] $\angle AC = \angle BD$ [Given] So, $\triangle ABC \cong \triangle DCB$ by S.S.S axiom of congruency Thus, $\angle ABC = \angle DBC$ [By C.P.C.T] But these are made by transversal BC on the same side of parallel lines AB and CD. B So, $\angle ABC + \angle DBC = 180^{\circ}$ $\angle ABC = 90^{\circ}$ Hence, ABCD is a square.

(iv) Given: ABCD is rhombus. To prove: Diagonals AC and BD bisects $\angle A$, $\angle C$, $\angle B$ and $\angle D$ respectively Proof: In $\triangle AOD$ and $\triangle COD$, we have [sides of a rhombus are all equal] AD = CDOD = OD[Common] AO = OC[Diagonal of rhombus bisect each other] So, $\triangle AOD \cong \triangle COD$ by S.S.S axiom of congruency Thus. $\angle AOD = \angle COD$ [By C.P.C.T]So, $\angle AOD + \angle COD = 180^{\circ}$ [Linear pair] $\angle AOD = 180^{\circ}$ $\angle AOD = 90^{\circ}$ And. $\angle COD = 90^{\circ}$ Thus, $OD \perp AC \Rightarrow BD \perp AC$ Also, $\angle ADO = \angle CDO$ [By C.P.C.T] So. OD bisect $\angle D$ BD bisect $\angle D$ Similarly, we can prove that BD bisect $\angle B$ and AC bisect the $\angle A$ and $\angle C$.

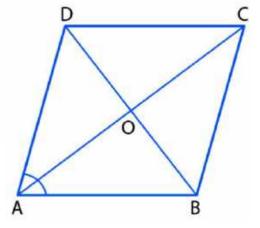
10. ABCD is a parallelogram. If the diagonal AC bisects ∠A, then prove that:

(i) AC bisects ∠C
(ii) ABCD is a rhombus
(iii) AC ⊥ BD.
Solution:

Given: In parallelogram ABCD in which diagonal AC bisects $\angle A$ To prove: (i) AC bisects $\angle C$ (ii) ABCD is a rhombus (iii) AC \perp BD Proof: (i) As AB || CD, we have [Opposite sides of a || gm] $\angle DCA = \angle CAB$ Similarly, $\angle DAC = \angle DCB$ But, $\angle CAB = \angle DAC$ [Since, AC bisects $\angle A$] Hence, $\angle DCA = \angle ACB$ and AC bisects $\angle C$.

(ii) As AC bisects $\angle A$ and $\angle C$ And, $\angle A = \angle C$ Hence, ABCD is a rhombus.

(iii) Since, AC and BD are the diagonals of a rhombus and AC and BD bisect each other at right angles



Hence, AC \perp BD

11. (i) Prove that bisectors of any two adjacent angles of a parallelogram are at right angles.
(ii) Prove that bisectors of any two opposite angles of a parallelogram are parallel.
(iii) If the diagonals of a quadrilateral are equal and bisect each other at right angles, then prove that it is a square.
Solution:

(i) Given AM bisect angle A and BM bisects angle of || gm ABCD. To prove: $\angle AMB = 90^{\circ}$ D Proof: We have, $\angle A + \angle B = 180^{\circ}$ [AD || BC and AB is the transversal] $\Rightarrow \frac{1}{2} (\angle A + \angle B) = 180^{\circ}/2$ $\frac{1}{2} \angle A + \frac{1}{2} \angle B = 90^{\circ}$ $\angle MAB + \angle MBA = 90^{\circ}$ [Since, AM bisects ∠A and BM bisects $\angle B$] Now, in $\triangle AMB$ $\angle AMB + \angle MAB + \angle MBA = 180^{\circ}$ [Angles sum property of a triangle] $\angle AMB + 90^{\circ} = 180^{\circ}$ $\angle AMB = 180^{\circ} - 90^{\circ} = 90^{\circ}$ Hence, bisectors of any two adjacent angles of a parallelogram are at right angles. (ii) Given: A || gm ABCD in which bisector AR of ∠A meets DC in R and bisector CQ of ∠C meets AB

in O To prove: AR || CQ Proof: In || gm ABCD, we have [Opposite angles of || gm are equal] $\angle A = \angle C$ $\frac{1}{2} \angle A = \frac{1}{2} \angle C$ $\angle DAR = \angle BCO$ [Since, AR is bisector of $\frac{1}{2} \angle A$ and CQ is the bisector of $\frac{1}{2} \angle C$] Now, in \triangle ADR and \triangle CBQ $\angle DAR = \angle BCQ$ [Proved above] [Opposite sides of || gm ABCD are AD = BCequal] So, $\triangle ADR \cong \triangle CBQ$, by A.S.A axiom of congruency Then by C.P.C.T, we have $\angle DRA = \angle BCQ$ And, $\angle DRA = \angle RAQ$ [Alternate angles since, DC || AB] Thus, $\angle RAQ = \angle BCQ$ But these are corresponding angles, Hence, AR || CQ.

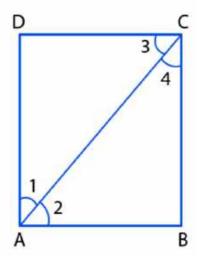
(iii) Given: In quadrilateral ABCD, diagonals AC and BD are equal and bisect each other at right angles To prove: ABCD is a square D Proof: In $\triangle AOB$ and $\triangle COD$, we have AO = OC[Given] BO = OD[Given] $\angle AOB = \angle COD$ [Vertically opposite angles] So, $\triangle AOB \cong \triangle COD$, by S.A.S axiom of congruency By C.P.C.T, we have AB = CDand $\angle OAB = \angle OCD$ But these are alternate angles AB || CD В Thus, ABCD is a parallelogram In a parallelogram, the diagonal bisect each other and are equal Hence, ABCD is a square.

12. (i) If ABCD is a rectangle in which the diagonal BD bisect ∠B, then show that ABCD is a square.

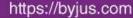
(ii) Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Solution:

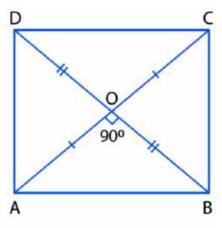
(i) ABCD is a rectangle and its diagonals AC bisects $\angle A$ and $\angle C$ To prove: ABCD is a square Proof: We know that the opposite sides of a rectangle are equal and each angle is 90° As AC bisects $\angle A$ and $\angle C$ So, $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$ But, $\angle A = \angle C = 90^{\circ}$ $\angle 2 = 45^{\circ}$ and $\angle 4 = 45^{\circ}$ And, AB = BC [Opposite sides of equal angles] But, AB = CD and BC = AD So, AB = BC = CD = DA Therefore, ABCD is a square.



(ii) In quadrilateral ABCD diagonals AC and BD are equal and bisect each other at right angle To prove: ABCD is a square Proof: In $\triangle AOB$ and $\triangle BOC$, we have AO = CO [Diagonals bisect each other at right angles] OB = OB [Common] $\angle AOB = \angle COB$ [Each 90°] So, $\triangle AOB \cong \triangle BOC$, by S.A.S axiom By C.P.C.T, we have



AB = BC ... (i) Similarly, in \triangle BOC and \triangle COD OB = OD [Diagonals bisect each other at right angles] OC = OC [Common] \angle BOC = \angle COD [Each 90°] So, \triangle BOC $\cong \triangle$ COD, by S.A.S axiom By C.P.C.T, we have BC = CD ... (ii) From (i) and (ii), we have AB = BC = CD = DA Hence, ABCD is a square.



13. P and Q are points on opposite sides AD and BC of a parallelogram ABCD such that PQ passes through the point of intersection O of its diagonals AC and BD. Show that PQ is bisected at O.

Solution:

Given: ABCD is a parallelogram, P and Q are the points on AB and DC. Diagonals AC and BD intersect each other at O.

To prove: D Diagonals of || gm ABCD bisect each other at O So, AO = OC and BO = ODNow, in $\triangle AOP$ and $\triangle COQ$ we have AO = OC and BO = ODNow, in $\triangle AOP$ and $\triangle COQ$ 0 AO = OC[Proved] $\angle OAP = \angle OCQ$ [Alternate angles] $\angle AOP = \angle COO$ [Vertically opposite angles] So, $\triangle AOP \cong \triangle COQ$ by S.A.S axiom Thus, by C.P.C.T P B OP = OQ

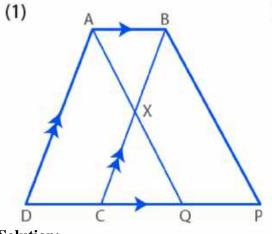
Hence, O bisects PQ.

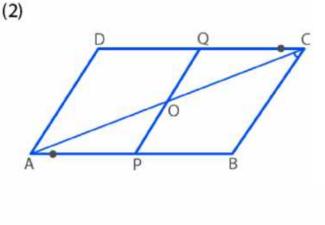
14. (a) In figure (1) given below, ABCD is a parallelogram and X is mid-point of BC. The line AX produced meets DC produced at Q. The parallelogram ABPQ is completed. Prove that:

(i) the triangles ABX and QCX are congruent;

(ii)DC = CQ = QP

(b) In figure (2) given below, points P and Q have been taken on opposite sides AB and CD respectively of a parallelogram ABCD such that AP = CQ. Show that AC and PQ bisect each other.





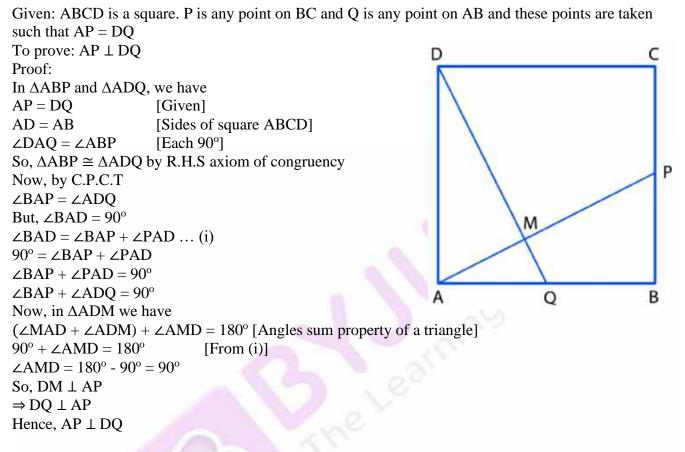
Solution:

(a) Given: ABCD is parallelogram and X is mid-point of BC. The line AX produced meets DC produced at Q and ABPQ is a \parallel gm.

To prove: (i) $\triangle ABX \cong \triangle QCX$ (ii) DC = CQ = QPProof: In $\triangle ABX$ and $\triangle QCX$, we have BX = XC[X is the mid-point of BC] $\angle AXB = \angle CXQ$ [Vertically opposite angles] [Alternate angle, since AB || CQ] $\angle XCQ = \angle XBA$ So, ABX $\cong \Delta QCX$ by A.S.A axiom of congruence Now, by C.P.C.T CQ = ABBut, [As ABCD and ABPQ are || gms] AB = DC and AB = QPHence. DC = CQ = QP(b) In || gm ABCD, P and Q are points on AB and CD respectively, PQ and AC intersect each other at O and AP = COTo prove: AC and PQ bisect each other i.e. AO = OC and PO = OQProof: In $\triangle AOP$ and $\triangle COQ$ AP = CQ[Given] $\angle AOP = \angle COQ$ [Vertically opposite angles] $\angle OAP = \angle OCP$ [Alternate angles] So, $\triangle AOP \cong \triangle COQ$ by A.A.S axiom of congruence Now, by C.P.C.T OP = OQ and OA = OCHence proved.

15. ABCD is a square. A is joined to a point P on BC and D is joined to a point Q on AB. If AP =

DQ, prove that AP and DQ are perpendicular to each other. Solution:



16. If P and Q are points of trisection of the diagonal BD of a parallelogram ABCD, prove that CQ || AP. Solution:

Given: ABCD is a || gm is which BP = PQ = QDTo prove: CQ || AP

In || gm ABCD, we have AB = CD [Opposite sides of a || gm are equal]

And BD is the transversal So, $\angle 1 = \angle 2$ [Alternate interior angles] ... (i) Now, in $\triangle ABP$ and $\triangle DCQ$ [Opposite sides of a || gm are equal] AB = CD $\angle 1 = \angle 2$ [From (i)] BP = QD[Given] So, $\triangle ABP \cong \triangle DCQ$ by S.A.S axiom of congruency Then by C.P.C.T, we have AP = QCAlso, $\angle APB = \angle DQC$ [By C.P.C.T] [Multiplying both sides by -1] $-\angle APB = -\angle DQC$ $180^{\circ} - \angle APB = 180^{\circ} - \angle DQC$ [Adding 180° both sides] $\angle APQ = \angle CQP$ But, these are alternate angles Hence, $AP \parallel QC \Rightarrow CQ \parallel AP$.

17. A transversal cuts two parallel lines at A and B. The two interior angles at A are bisected and so are the two interior angles at B ; the four bisectors form a quadrilateral ABCD. Prove that

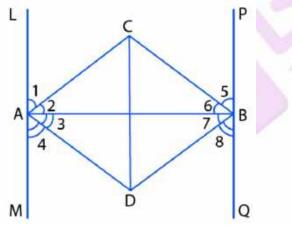
(i) ABCD is a rectangle.

(ii) CD is parallel to the original parallel lines.

18. In a parallelogram ABCD, the bisector of ∠A meets DC in E and AB = 2 AD. Prove that

(i) **BE** bisects $\angle B$

(ii) $\angle AEB = a$ right angle.



Solution:

Given: LM || PQ and AB is the transversal line cutting \angle M at A and PQ at B AC, AD, BC and BD is the bisector of \angle LAB, \angle BAM, \angle PAB and \angle ABQ respectively. AC and BC intersect at C and AD and BD intersect at D. A quadrilateral ABCD is formed. To prove: (i) ABCD is a rectangle (ii) CD || LM and PQ Proof: (1) \angle LAB + \angle BAM = 180° [LAM is a straight line]

$\frac{1}{2} (\angle LAB + \angle BAM) = 90^{\circ}$ $\frac{1}{2} \angle LAB + \frac{1}{2} \angle BAM = 90^{\circ}$ $\angle 2 + \angle 3 = 90^{\circ}$ $\angle CAD = 90^{\circ}$ $\angle A = 90^{\circ}$	[Since, AC and AD is bisector of ∠LAB & ∠BAM respectively]
(2) Similarly, $\angle PBA + \angle QB$. $\frac{1}{2} (\angle PBA + \angle QBA) = 90^{\circ}$ $\frac{1}{2} \angle PBA + \frac{1}{2} \angle QBA = 90^{\circ}$ $\angle 6 + \angle 7 = 90^{\circ}$ $\angle CBD = 90^{\circ}$ $\angle B = 90^{\circ}$	A = 180° [PBQ is a straight line] [Since, BC and BD is bisector of ∠PAB & ∠QBA respectively]
$(3) \angle LAB + \angle ABP = 180^{\circ}$ $\frac{1}{2} \angle LAB + \frac{1}{2} \angle ABP = 90^{\circ}$ $\angle 2 + \angle 6 = 90^{\circ}$	[Sum of co-interior angles is 180° and given LM ∥ PQ] [Since, AC and BC is bisector of ∠LAB & ∠PBA respectively]
(4) In $\triangle ACB$, $\angle 2 + \angle 6 + \angle C = 180^{\circ}$ ($\angle 2 + \angle 6$) + $\angle C = 180^{\circ}$ $90^{\circ} + \angle C = 180^{\circ}$ $\angle C = 180^{\circ} - 90^{\circ}$ $\angle C = 90^{\circ}$	[Angles sum property of a triangle] [using (3)]
(5) \angle MAB + \angle ABQ = 180° $\frac{1}{2} \angle$ MAB + $\frac{1}{2} \angle$ ABQ = 90° $\angle 3 + \angle 7 = 90°$ (6) In \triangle ADB, $\angle 3 + \angle 7 + \angle D = 180°$ ($\angle 3 + \angle 7$) + $\angle D = 180°$ 90° + $\angle D = 180°$ $\angle D = 180° - 90°$ $\angle D = 90°$	 [Sum of co-interior angles is 180° and given LM PQ] [Since, AD and BD is bisector of ∠MAB & ∠ABQ respectively] [Angles sum property of a triangle] [using (5)]
(7) $\angle LAB + \angle BAM = 180^{\circ}$ $\angle BAM = \angle ABP$ $\frac{1}{2} \angle BAM = \frac{1}{2} \angle ABP$ $\angle 3 = \angle 6$ Similarly, $\angle 2 = \angle 7$ (8) In $\triangle ABC$ and $\triangle ABD$, $\angle 2 = \angle 7$ [From AB = AB [Comm	
$\angle 6 = \angle 3$ [From	

So, $\triangle ABC \cong \triangle ABD$ by A.S.A axiom of congruency Then, by C.P.C.T we have AC = DBAlso, CB = AD

(9) $\angle A = \angle B = \angle C = \angle D = 90^{\circ}$ [From (1), (2), (3) and (4)] AC = DB [Proved in (8)] CB = AD [Proved in (8)] Hence, ABCD is a rectangle.

(10) Since, ABCD is a rectangle [From (9)]OA = OD [Diagonals of rectangle bisect each other]

(11) In $\triangle AOD$, we have OA = OD [From (10)] $\angle 9 = \angle 3$ [Angles opposite to equal sides are equal]

(12) $\angle 3 = \angle 4$ [AD bisects $\angle MAB$]

(13) $\angle 9 = \angle 4$ [From (11) and (12)] But these are alternate angles. OD || LM \Rightarrow CD || LM Similarly, we can prove that $\angle 10 = \angle 8$ But these are alternate angles, So, OD || PQ \Rightarrow CD || PQ

 (14) CD || LM
 [Proved in (13)]

 CD || PQ
 [Proved in (13)]

18. In a parallelogram ABCD, the bisector of ∠A meets DC in E and AB = 2 AD. Prove that:
(i) BE bisects ∠B
(ii) ∠AEB is a right angle
Solution:

Given: ABCD is a || gm in which bisectors of angle A and B meets in E and AB = 2 AD To prove: (i) BE bisects $\angle B$ (ii) $\angle AEB = 90^{\circ}$ Proof: (1) In || gm ABCD $\angle 1 = \angle 2$ [AD bisects angles $\angle A$]

(2) AB || DC and AE is the transversal $\angle 2 = \angle 3$ [Alternate angles]

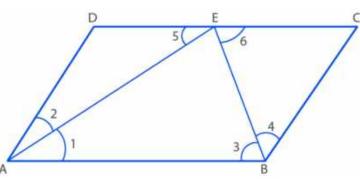
(3) $\angle 1 = \angle 2$ [From (1) and (2)]

	ve ed in (3)] s opposite to equal	
(5) $AB = 2 AD$ AB/2 = AD AB/2 = DE DC/2 = DE So, E is the mid-poin $\Rightarrow DE = EC$	[Given] [using (4)] [AB = DC, opposite sides of a gm are equal] at of D.	
 (6) AD = BC (7) DE = BC (8) EC = BC 	[Opposite sides of a gm are equal] [From (4) and (6)] [From (5) and (7)]	
(9) In \triangle BCE, we haveEC = BC[Proved in (8)] $\angle 6 = \angle 5$ [Angles opposite to equal sides are equal]		
(10) AB DC and BE is the transerval $\angle 4 = \angle 5$ [Alternate angles]		
(11) $\angle 4 = \angle 6$ [From (9) and (10)] So, BE is bisector of $\angle B$		
(12) $\angle A + \angle B = 180^{\circ}$ [Sum of co-interior angles is equal to 180°, AD BC] $\frac{1}{2} \angle A + \frac{1}{2} \angle B = 180^{\circ}/2$ $\angle 2 + \angle 4 = 90^{\circ}$ [AE is bisector of $\angle A$ and BE is bisector of $\angle B$]		
(13) In $\triangle APB$, $\angle AEB + \angle 2 + \angle 4 =$ $\angle AEB + 90^{\circ} = 180^{\circ}$ -Hence, $\angle AEB = 90^{\circ}$		
19. ABCD is a parallelogram, bisectors of angles A and B meet at E which lie on DC. Prove that AB.		

Solution:

Given: ABCD is a parallelogram in which bisector of $\angle A$ and $\angle B$ meets DC in E To prove: AB = 2 AD Proof: In parallelogram ABCD, we have AB || DC

$\angle 1 = \angle 5$	[Alternate angles, AE is transversal]
$\angle 1 = \angle 2$	[AE is bisector of $\angle A$, given]
Thus, $\angle 2 = \angle 5$	5 (i)
Now, in $\triangle AEI$)
DE = AD	[Sides opposite to equal angles are
equal]	
$\angle 3 = \angle 6$	[Alternate angles]
$\angle 3 = \angle 4$	[Since, BE is bisector of $\angle B$ (given)]
Thus, $\angle 4 = \angle 6$	5 (ii)
In \triangle BCE, we l	nave
BC = EC	[Sides opposite to equal angles
are equal]	
AD = BC	[Opposite sides of gm are equal]
AD = DE = EC	C [From (i) and (ii)]
AB = DC	[Opposite sides of a gm are equal]
AB = DE + EC	2
= AD + AI	D
Hence,	
AB = 2 AD	



20. ABCD is a square and the diagonals intersect at O. If P is a point on AB such that AO =AP, prove that $3 \angle POB = \angle AOP$. Solution:

```
Given: ABCD is a square and the diagonals intersect at O. P is the point on AB such that AO = AP
To prove: 3 \angle POB = \angle AOP
Proof:
(1) In square ABCD, AC is a diagonal
So, \angle CAB = 45^{\circ}
\angle OAP = 45^{\circ}
(2) In \triangle AOP,
\angle OAP = 45^{\circ}
                                                 [From (1)]
AO = AP
                                                 [Sides opposite to equal angles are equal]
Now.
\angle AOP + \angle APO + \angle OAP = 180^{\circ}
                                                 [Angles sum property of a triangle]
\angle AOP + \angle AOP + 45^{\circ} = 180^{\circ}
2 \angle AOP = 180^{\circ} - 45^{\circ}
\angle AOP = 135^{\circ}/2
(3) \angle AOB = 90^{\circ}
                                       [Diagonals of a square bisect at right angles]
So, \angle AOP + \angle POB = 90^{\circ}
135^{\circ}/2 + \angle POB = 90^{\circ}
                                       [From (2)]
\angle POB = 90^{\circ} - 135^{\circ}/2
         =(180^{\circ}-135^{\circ})/2
        = 45^{\circ}/2
```


F

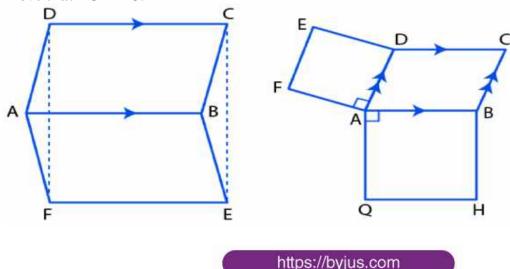
 $3 \angle POB = 135^{\circ}/2$ [Multiplying both sides by 3] Hence, $\angle AOP = 3 \angle POB$ [From (2) and (3)]

21. ABCD is a square. E, F, G and H are points on the sides AB, BC, CD and DA respectively such that AE = BF = CG = DH. Prove that EFGH is a square. Solution:

Given: ABCD is a square in which E, F, G and H are points on AB, BC, CD and DA Such that AE = BF = CG = DHEF, FG, GH and HE are joined D G C To prove: EFGH is a square Proof: Since, AE = BF = CG = DHSo, EB = FC = GD = HANow, in $\triangle AEH$ and $\triangle BFE$ AE = BF[Given] AH = EB[Proved] $\angle A = \angle B$ [Each 90°] So, $\triangle AEH \cong \triangle BFE$ by S.A.S axiom of congruency н Then, by C.P.C.T we have EH = EF4 And $\angle 4 = \angle 2$ But $\angle 1 + \angle 4 = 90^{\circ}$ $\angle 1 + \angle 2 = 90^{\circ}$ B Thus, $\angle \text{HEF} = 90^{\circ}$ A E Hence, EFGH is a square.

22. (a) In the Figure (1) given below, ABCD and ABEF are parallelograms. Prove that
(i) CDFE is a parallelogram
(ii) FD = EC
(iii) Δ AFD = ΔBEC.
(b) In the figure (2) given below, ABCD is a parallelogram, ADEF and AGHB are two squares.

Prove that FG = AC.



Solution:

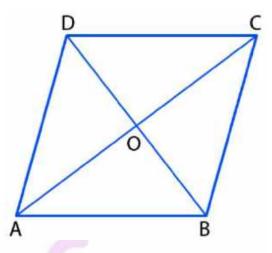
Given: ABCD and ABEF are || gms To prove: (i) CDFE is a parallelogram (ii) FD = EC(iii) $\Delta AFD = \Delta BEC$ Proof: (1) DC \parallel AB and DC = AB [ABCD is a || gm] (2) FE \parallel AB and FE = AB [ABEF is a || gm] (3) DC \parallel FE and DC = FE [From (1) and (2)]Thus, CDFE is a || gm (4) CDEF is a || gm So, FD = EC(5) In \triangle AFD and \triangle BEC, we have AD = BC[Opposite sides of || gm ABCD are equal] AF = BE[Opposite sides of || gm ABEF are equal] FD = BE[From (4)] Hence, $\triangle AFD \cong \triangle BEC$ by S.S.S axiom of congruency (b) Given: ABCD is a || gm, ADEF and AGHB are two squares To prove: FG = ACProof: (1) $\angle FAG + 90^{\circ} + 90^{\circ} + \angle BAD = 360^{\circ}$ [At a point total angle is 360°] $\angle FAG = 360^\circ - 90^\circ - 20^\circ - \angle BAD$ $\angle FAG = 180^{\circ} - \angle BAD$ (2) $\angle B + \angle BAD = 180^{\circ}$ [Adjacent angle in || gm is equal to 180°] $\angle B = 180^{\circ} - \angle BAD$ [From (1) and (2)] (3) $\angle FAG = \angle B$ (4) In $\triangle AFG$ and $\triangle ABC$, we have AF = BC[FADE and ABCD both are squares on the same base] Similarly, AG = AB $\angle FAG = \angle B$ [From (3)] So, $\triangle AFG \cong \triangle ABC$ by S.A.S axiom of congruency Hence, by C.P.C.T FG = AC**23.** ABCD is a rhombus in which $\angle A = 60^\circ$. Find the ratio AC : BD.

Solution:

Let each side of the rhombus ABCD be a $\angle A = 60^{\circ}$ So, ABD is an equilateral triangle $\Rightarrow BD = AB = a$

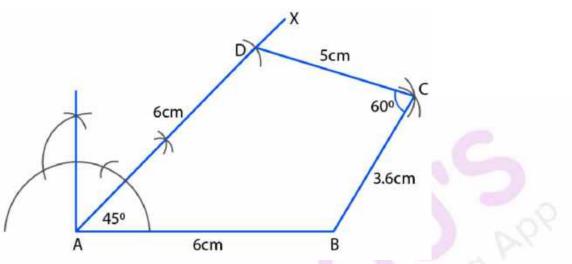
We know that, the diagonals of a rhombus bisect each other at right angles So in right triangle AOB we have

So, in right triangle AOB, we have $AO^2 + OB^2 = AB^2$ [By Pythagoras Theorem] $AO^2 = AB^2 - OB^2$ $= a^2 - (\frac{1}{2}a)^2$ $= a^2 - a^2/4$ $AO = \sqrt{(3a^2/4)} = \sqrt{3a/2}$ But, AC = 2 AO = 2 x 3a/2 = 3a Hence, AC : BD = $\sqrt{3a}$: a = $\sqrt{3}$: 1



Exercise 13.2

1. Using ruler and compasses only, construct the quadrilateral ABCD in which $\angle BAD = 45^{\circ}$, AD = AB = 6cm, BC = 3.6cm, CD = 5cm. Measure $\angle BCD$. Solution:



Steps of construction:

(i) Draw a line segment AB = 6cm

(ii) At A, draw a ray AX making an angle of 45° and cut off AD = 6cm

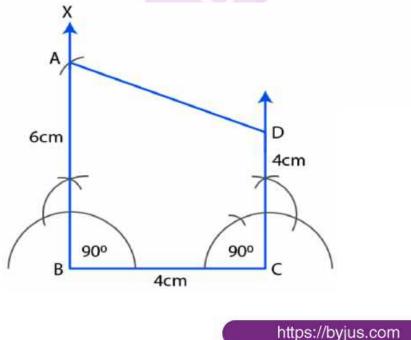
(iii) With centre B and radius 3.6 cm and with centre D and radius 5 cm, draw two arcs intersecting each other at C.

(iv) Join BC and DC.

Thus, ABCD is the required quadrilateral.

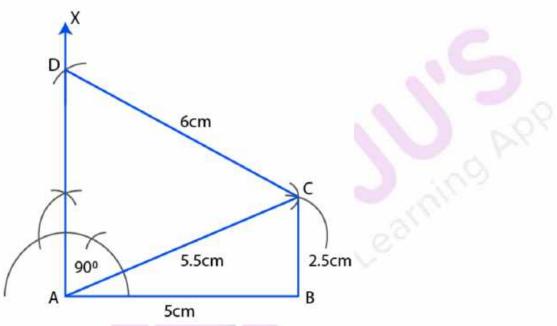
On measuring $\angle BCD$, it is 60°.

2. Draw a quadrilateral ABCD with AB = 6cm, BC = 4cm, CD = 4 cm and \angle BC = \angle BCD = 90°. Solution:



Steps of construction:
(i) Draw a line segment BC = 4 cm
(ii) At B and C draw rays BX and CY making an angle of 90° each
(iii) From BX, cut off BA = 6 cm and from CY, cut off CD = 4cm
(iv) Join AD.
Thus, ABCD is the required quadrilateral.

3. Using ruler and compasses only, construct the quadrilateral ABCD given that AB = 5 cm, BC = 2.5 cm, CD = 6 cm, $\angle BAD = 90^{\circ}$ and the diagonal AC = 5.5 cm. Solution:



Steps of construction:

(i) Draw a line segment AB = 5cm

(ii) With centre A and radius 5.5cm and with centre B and radius 2.5cm draw arcs which intersect each other at C.

(iii) Join AC and BC.

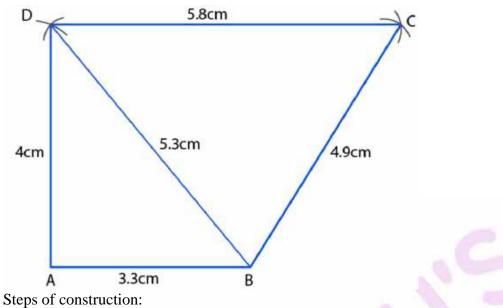
(iv) At A, draw a ray AX making an angle of 90°.

(v) With centre C and radius 6cm, draw an arc intersecting AX at D

(vi) Join CD.

Thus, ABCD is the required quadrilateral.

4. Construct a quadrilateral ABCD in which AB = 3.3 cm, BC = 4.9 cm, CD = 5.8 cm, DA = 4 cm and BD = 5.3 cm. Solution:



(i) Draw a line segment AB = 3.3cm

(ii) with centre A and radius 4cm, and with centre B and radius 5.3cm, draw arcs intersecting each other at D.

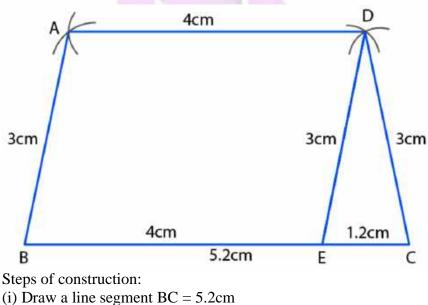
(iii) Join AD and BD.

(iv) With centre B and radius 4.9 cm and with centre D and radius 5.8cm, draw arcs intersecting each other at C.

(v) Join BC and DC.

Thus, ABCD is the required quadrilateral.

5. Construct a trapezium ABCD in which AD || BC, AB = CD = 3 cm, BC = 5.2cm and AD = 4 cm. Solution:



(ii) From BC, cut off BE = AD = 4cm

(iii) With centre E and C, and radius 3 cm, draw arcs intersecting each other at D.

(iv) Join ED and CD.

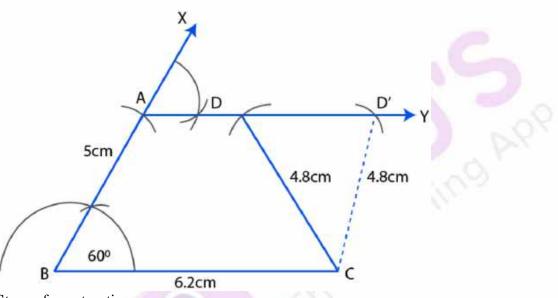
(v) With centre D and radius 4cm and with centre B and radius 3cm, draw arcs intersecting each other at A.

(vi) Join BA and DA

Thus, ABCD is the required trapezium.

6. Construct a trapezium ABCD in which AD || BC, ∠B= 60°, AB = 5 cm. BC = 6.2 cm and CD = 4.8 cm.

Solution:



Steps of construction:

(i) Draw a line segment BC = 6.2cm

(ii) At B, draw a ray BX making an angle of 60° and cut off AB = 5cm

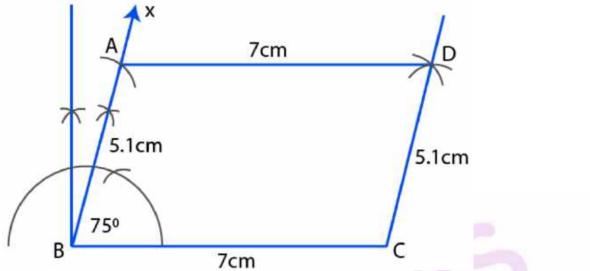
(iii) From A, draw a line AY parallel to BC.

(iv) With centre C and radius 4.8cm, draw an arc which intersects AY at D and D'.

(v) Join CD and CD'

Thus, ABCD and ABCD' are the required two trapeziums.

7. Using ruler and compasses only, construct a parallelogram ABCD with AB = 5.1 cm, BC = 7 cm and $\angle ABC = 75^{\circ}$. Solution:



Steps of construction:

(i) Draw a line segment BC = 7cm

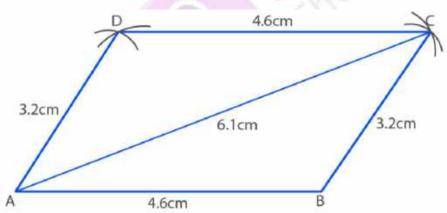
(ii) A to B, draw a ray Bx making an angle of 75° and cut off AB = 5.1cm

(iii) With centre A and radius 7cm with centre C and radius 5.1cm, draw arcs intersecting each other at D.

(iv) Join AD and CD.

Thus, ABCD is the required parallelogram.

8. Using ruler and compasses only, construct a parallelogram ABCD in which AB = 4.6 cm, BC = 3.2 cm and AC = 6.1 cm. Solution:



Steps of construction:

(i) Draw a line segment AB = 4.6cm

(ii) With centre A and radius 6.1cm and with centre B and radius 3.2cm, draw arcs intersecting each other at C.

(iii) Join AC and BC.

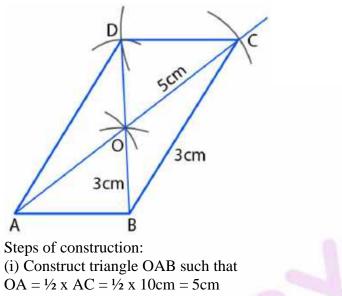
(iv) Again, with centre A and radius 3.2cm and with centre C and radius 4.6cm, draw arcs intersecting each other at C.

(v) Join AD and CD.

Thus, ABCD is the required parallelogram.

9. Using ruler and compasses, construct a parallelogram ABCD give that AB = 4 cm, AC = 10 cm, BD = 6 cm. Measure BC.

Solution:



 $OB = \frac{1}{2} \times BD = \frac{1}{2} \times 6cm = 3cm$ As, diagonals of || gm bisect each other and AB = 4cm

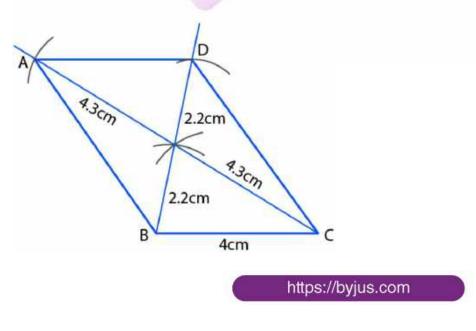
(ii) Produce AO to C such that OA = OC = 5cm(iii) Produce BO to D such that OB = OD = 3cm

(iv) Join AD, BC and CD

Thus, ABCD is the required parallelogram

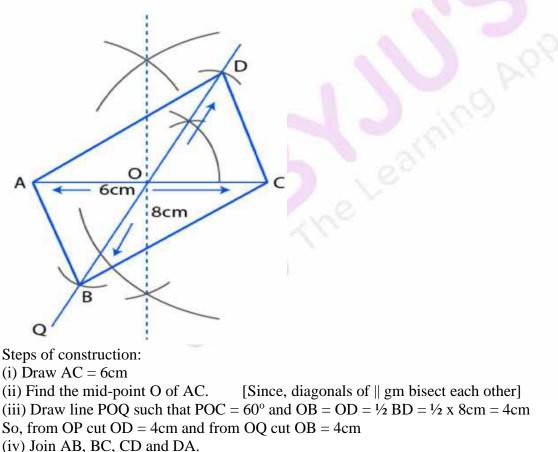
(v) Measure BC which is equal to 7.2cm

10. Using ruler and compasses only, construct a parallelogram ABCD such that BC = 4 cm, diagonal AC = 8.6 cm and diagonal BD = 4.4 cm. Measure the side AB. Solution:



Steps of construction: (i) Construct triangle OBC such that $OB = \frac{1}{2} \times BD = \frac{1}{2} \times 4.4 \text{ cm} = 2.2 \text{ cm}$ $OC = \frac{1}{2} \times AC = \frac{1}{2} \times 8.6 \text{ cm} = 4.3 \text{ cm}$ Since, diagonals of || gm bisect each other and BC = 4 cm (ii) Produce BO to D such that BO = OD = 2.2 cm (iii) Produce CO to A such that CO = OA = 4.3 cm (iv) Join AB, AD and CD Thus, ABCD is the required parallelogram. (v) Measure the side AB, AB = 5.6 cm

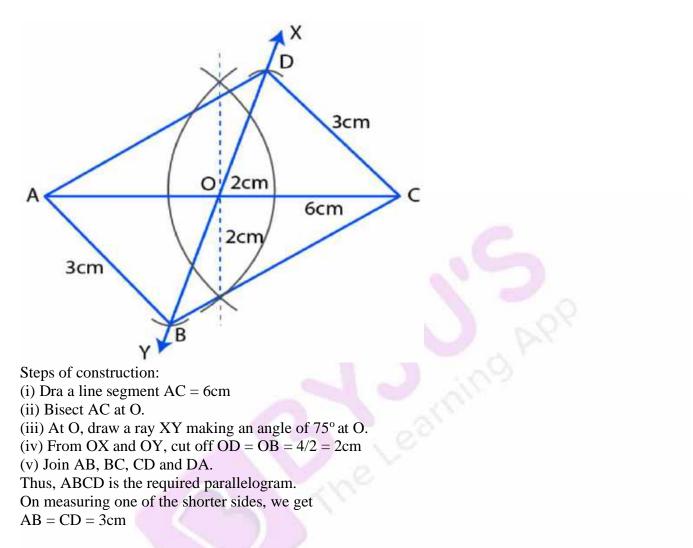
11. Use ruler and compasses to construct a parallelogram with diagonals 6 cm and 8 cm in length having given the acute angle between them is 60°. Measure one of the longer sides. Solution:



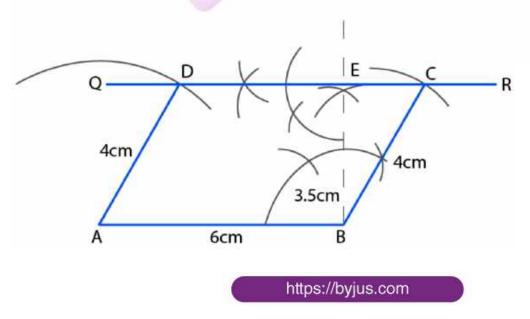
Thus, ABCD is the required parallelogram.

(v) Measure the length of side AD = 6.1 cm

12. Using ruler and compasses only, draw a parallelogram whose diagonals are 4 cm and 6 cm long and contain an angle of 75°. Measure and write down the length of one of the shorter sides of the parallelogram. Solution:



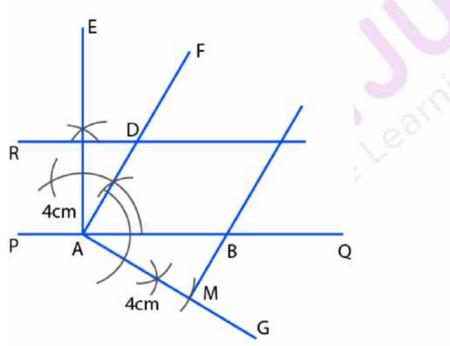
13. Using ruler and compasses only, construct a parallelogram ABCD with AB = 6 cm, altitude = **3.5** cm and side BC = 4 cm. Measure the acute angles of the parallelogram. Solution:



Steps of construction: (i) Draw AB = 6cm (ii) At B, draw BP \perp AB (iii) From BP, cut BE = 3.5cm = height of || gm (iv) Through E draw QR parallel to AB (v) With B as centre and radius BC = 4cm draw an arc which cuts QR at C. (vi) Since, opposite sides of || gm are equal So, AD = BC = 4cm (vii)With A as centre and radius = 4cm draw an arc which cuts QR at D. Thus, ABCD is the required parallelogram. (viii) To measure the acute angle of parallelogram which is equal to 61°.

14. The perpendicular distances between the pairs of opposite sides of a parallelogram ABCD are 3 cm and 4 cm and one of its angles measures 60°. Using ruler and compasses only, construct ABCD.

Solution:



Steps of construction:

(i) Draw a straight-line PQ, take a point A on it.

(ii) At A, construct $\angle QAF = 60^{\circ}$

(iii) At A, draw AE \perp PQ from AE cut off AN = 3cm

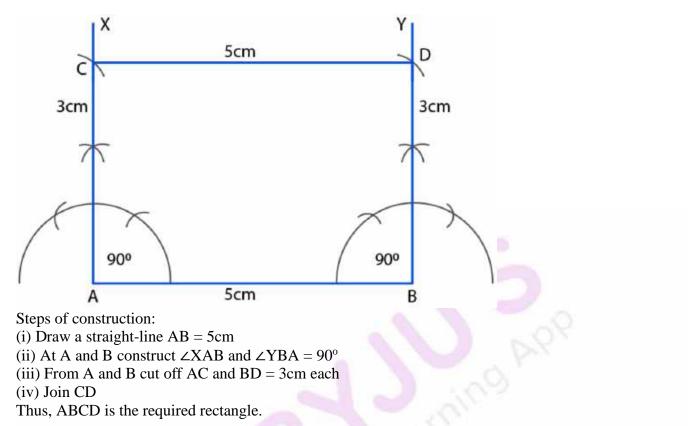
(iv) Through N draw a straight line to PQ to meet AF at D.

(v) At D, draw AG \perp AD, from AG cut off AM = 4cm

(vi) Through M, draw at straight line parallel to AD to meet AQ in B and ND in C.

Then, ABCD is the required parallelogram

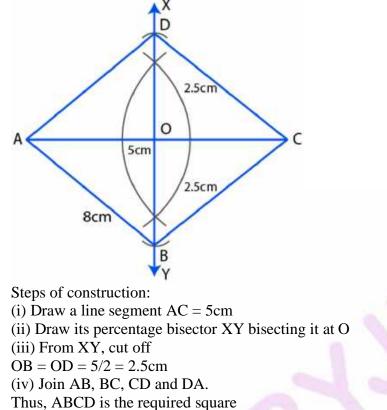
15. Using ruler and compasses, construct a rectangle ABCD with AB = 5cm and AD = 3 cm. Solution:



16. Using ruler and compasses only, construct a rectangle each of whose diagonals measures 6cm and the diagonals intersect at an angle of 45°. Solution:

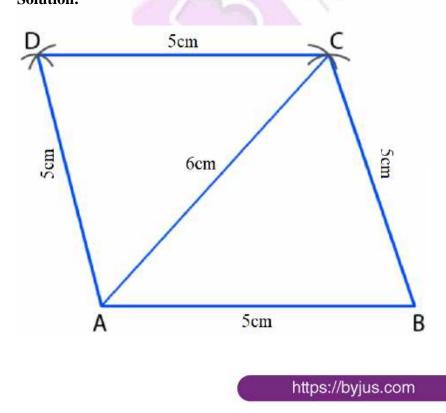
Steps of construction:
(i) Draw a line segment AC = 6cm
(ii) Bisect AC at O.
(iii) At O, draw a ray XY making an angle of 45° at O.
(iv) From XY, cut off OB = OD = 6/2 = 3cm each
(v) Join AB, BC CD and DA.
Thus, ABCD is the required rectangle.

17. Using ruler and compasses only, construct a square having a diagonal of length 5cm. Measure its sides correct to the nearest millimeter. Solution:



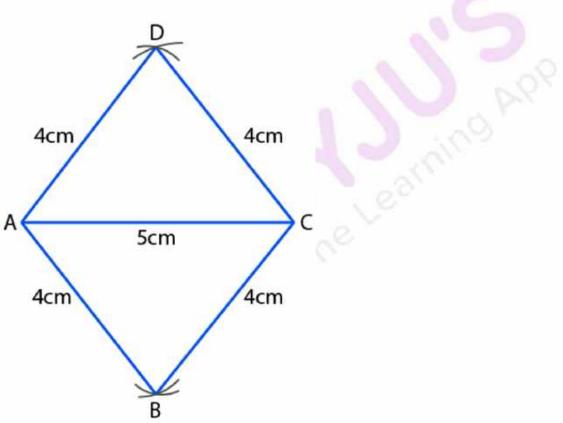
On measuring its sides, each = 3.6cm (approximately)

18. Using ruler and compasses only construct A rhombus ABCD given that AB 5cm, AC = 6cm measure ∠BAD. Solution:



Steps of construction: (i) Draw a line segment AB = 5cm (ii) With centre A and radius 6cm, with centre B and radius 5cm, draw arcs intersecting each other at C. (iii) Join AC and BC (iv) With centre A and C and radius 5cm, draw arc intersecting each other 5cm, draw arcs intersecting each other at D (v) Join AD and CD. Thus, ABCD is a rhombus On measuring, $\angle BAD = 106^{\circ}$.

19. Using ruler and compasses only, construct rhombus ABCD with sides of length 4cm and diagonal AC of length 5 cm. Measure ∠ABC. Solution:



Steps of construction:

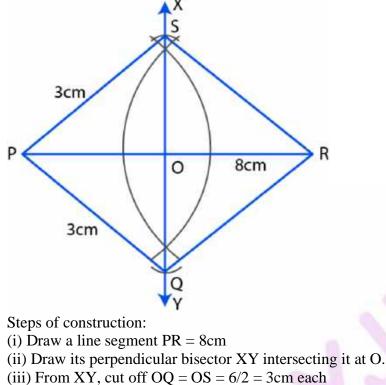
(i) Draw a line segment AC = 5cm

(ii) With centre A and C and radius 4cm, draw arcs intersecting each other above and below AC at D and B.

(iii) Join AB, BC, CD and DA.

Thus, ABCD is the required rhombus.

20. Construct a rhombus PQRS whose diagonals PR and QS are 8cip and 6cm respectively. Solution:



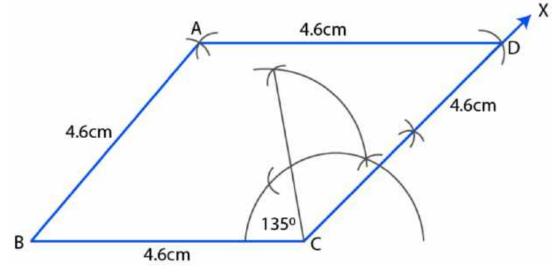
(iii) From X Y, cut off OQ = OS = 0/2 = 3cm

(iv) Join PQ, QR, RS and SP Thus, POPS is the required rhom

Thus, PQRS is the required rhombus.

21. Construct a rhombus ABCD of side 4.6 cm and ∠BCD = 135°, by using ruler and compasses only.

Solution:



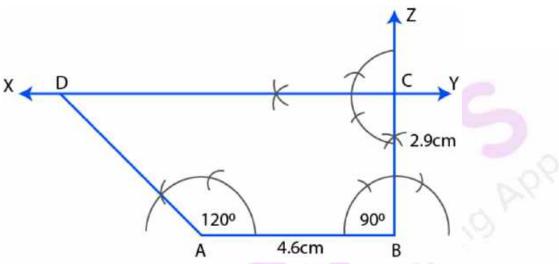
Steps of construction:

(i) Draw a line segment BC = 4.6cm

(ii) At C, draw a ray CX making an angle of 135° and cut off CD = 4.6cm

(iii) With centres B and D, and radius 4.6cm draw arcs intersecting each other at A.(iv) Join BA and DA.Thus, ABCD is the required rhombus.

22. Construct a trapezium in which AB || CD, AB = 4.6 cm, \angle ABC = 90°, \angle DAB = 120° and the distance between parallel sides is 2.9 cm. Solution:



Steps of construction:

(i) Draw a line segment AB = 4.6cm

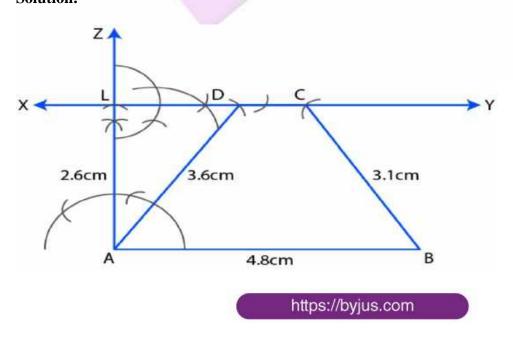
(ii) At B, draw a ray BZ making an angle of 90° and cut off BC = 2.9cm (distance between AB and CD)

(iii) At C, draw a parallel line XY to AB.

(iv) At A, draw a ray making an angle of 120° meeting XY at D.

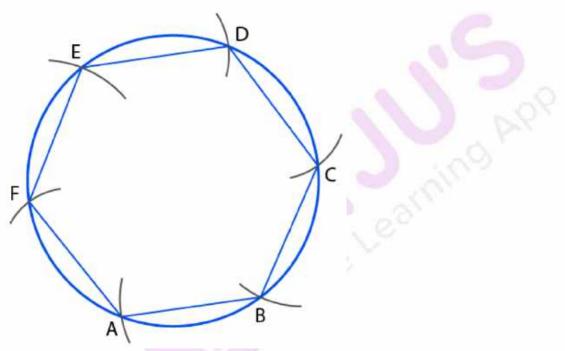
Thus, ABCD is the required trapezium.

23. Construct a trapezium ABCD when one of parallel sides AB = 4.8 cm, height = 2.6cm, BC = 3.1 cm and AD = 3.6 cm. Solution:



Step construction:
(i) Draw a line segment AB = 4.8cm
(ii) At A, draw a ray AZ making an angle of 90° cut off AL = 2.6cm
(iii) At L, draw a line XY parallel to AB.
(iv) With centre A and radius 3.6cm and with centre B and radius 3.1cm, draw arcs intersecting XY at D and C respectively.
(v) Join AD and BC
Thus, ABCD is the required trapezium.

24. Construct a regular hexagon of side 2.5 cm. Solution:



Steps of construction:

(i) With O as centre and radius = 2.5 cm, draw a circle

(ii) take any point A on the circumference of circle.

(iii) With A as centre and radius = 2.5cm, draw an arc which cuts the circumference of circle at B. (iv) With B as centre and radius = 2.5cm, draw an arc which cuts the circumference of circle at C. (v) With C as centre and radius = 2.5cm, draw an arc which cuts the circumference of circle at D.

(v) With C as centre and radius = 2.5cm, draw an arc which cuts the circumference of circle at D. (vi) With D as centre and radius = 2.5cm, draw an arc which cuts the circumference of circle at E.

(vi) With E as centre and radius = 2.5cm, draw an arc which cuts the circumference of circle at E. (vii) With E as centre and radius = 2.5cm, draw an arc which cuts the circumference of circle at F.

(viii) Join AB, BC, CD, DE, EF and FA.

(ix) ABCDEF is the required Hexagon.

R

D

Chapter Test

1. In the given figure, ABCD is a parallelogram. CB is produced to E such that BE=BC. Prove that AEBD is a parallelogram. Solution:

Given ABCD is a || gm in which CB is produced to E such that BE = BCBD and AE are joined To prove: AEBD is a parallelogram Proof: In $\triangle AEB$ and $\triangle BDC$ EB = BC[Given] $\angle ABE = \angle DCB$ [Corresponding angles] [Opposite sides of || gm] AB = DCThus, $\triangle AEB \cong \triangle BDC$ by S.A.S axiom So, by C.P.C.T But, AD = CB = BE [Given] As the opposite sides are equal and $\angle AEB = \angle DBC$ But these are corresponding angles Hence, AEBD is a parallelogram.

2. In the given figure, ABC is an isosceles triangle in which AB = AC. AD bisects exterior angle PAC and CD || BA. Show that (i) $\angle DAC = \angle BCA$ (ii) ABCD is a parallelogram. Solution:

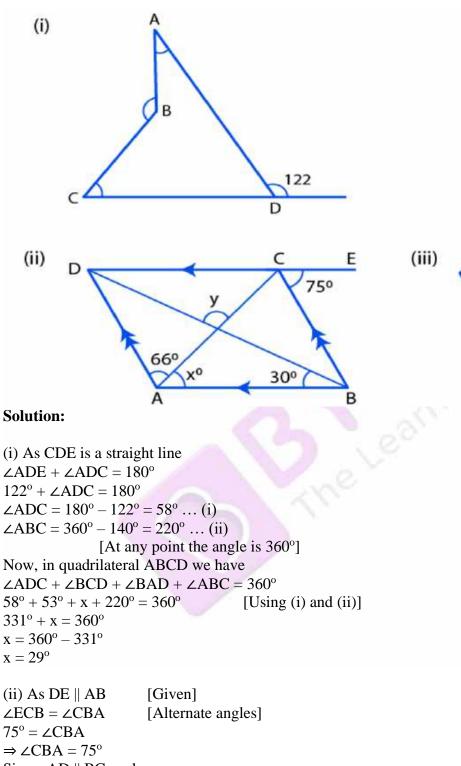
Given: In isosceles triangle ABC, AB = AC. AD is the bisector of ext. $\angle PAC$ and CD || BA To prove: (i) $\angle DAC = \angle BCA$ (ii) ABCD is a || gm Proof: In $\triangle ABC$ AB = AC[Given] $\angle C = \angle B$ [Angles opposite to equal sides] Since, ext. $\angle PAC = \angle B + \angle C$ $= \angle C + \angle C$ $= 2 \angle C$ $= 2 \angle BCA$ So, $\angle DAC = 2 \angle BCA$ $\angle DAC = \angle BCA$ But these are alternate angles B Thus, AD || BC But, AB || AC Hence, ABCD is a || gm.

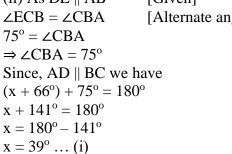
3. Prove that the quadrilateral obtained by joining the mid-points of an isosceles trapezium is a rhombus.

Solution:

Given: ABCD is an isosceles trapezium in which $AB \parallel DC$ and AD = BCP, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively PQ, QR, RS and SP are joined. To prove: PQRS is a rhombus D R Construction: Join AC and BD Proof: Since, ABCD is an isosceles trapezium Its diagonals are equal AC = BDNow, in $\triangle ABC$ P and Q are the mid-points of AB and BC S Q So, PQ || AC and PQ = $\frac{1}{2}$ AC ... (i) Similarly, in $\triangle ADC$ S and R mid-point of CD and AD So, SR || AC and SR = $\frac{1}{2}$ AC ... (ii) From (i) and (ii), we have $PQ \parallel SR$ and PQ = SRThus, PQRS is a parallelogram. В p Now, in $\triangle APS$ and $\triangle BPQ$ AP = BP[P is the mid-point] [Half of equal sides] AS = BQ[As ABCD is an isosceles trapezium] $\angle A = \angle B$ So, $\triangle APS \cong \triangle BPQ$ by SAS Axiom of congruency Thus, by C.P.C.T we have PS = PQBut there are the adjacent sides of a parallelogram So, sides of PQRS are equal Hence, PQRS is a rhombus - Hence proved

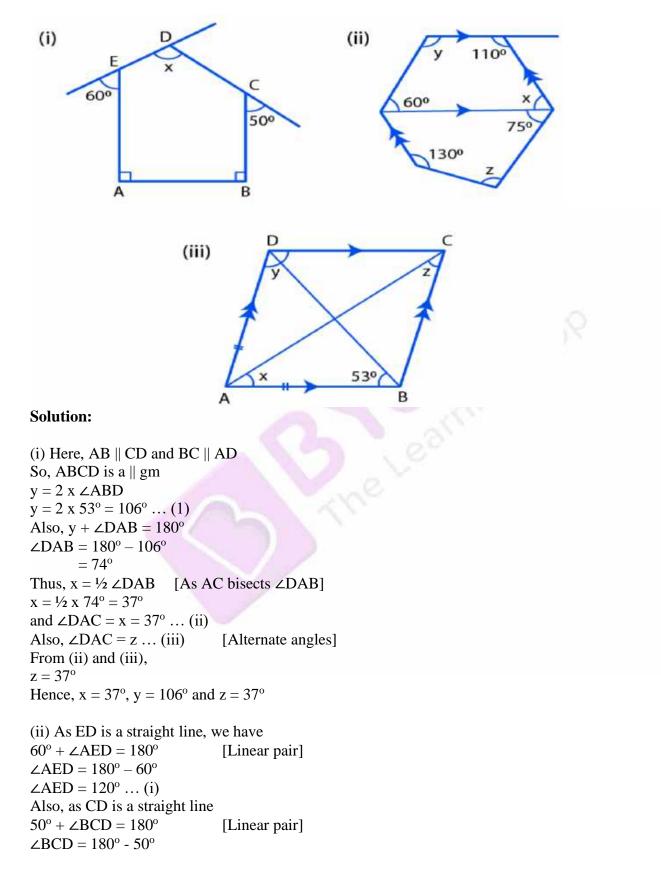
4. Find the size of each lettered angle in the following figures.





Now, in $\triangle AMB$ $x + 30^{\circ} + \angle AMB = 180^{\circ}$ [Angles sum property of a triangle] $39^{\circ} + 30^{\circ} + \angle AMB = 180^{\circ}$ [From (i)] $69^{\circ} + \angle AMB + 180^{\circ}$ $\angle AMB = 180^{\circ} - 69^{\circ} = 111^{\circ} \dots (ii)$ Since, $\angle AMB = y$ [Vertically opposite angles] \Rightarrow y = 111° Hence, $x = 39^{\circ}$ and $y = 111^{\circ}$ (iii) In $\triangle ABD$ AB = AD[Given] $\angle ABD = \angle ADB$ [Angles opposite to equal sides are equal] $\angle ABD = 42^{\circ}$ [Since, given $\angle ADB = 42^{\circ}$] And, $\angle ABD + \angle ADB + \angle BAD = 180^{\circ}$ [Angles sum property of a triangle] $42^{\circ} + 42^{\circ} + y = 180^{\circ}$ $84^{\circ} + y = 180^{\circ}$ $y = 180^{\circ} - 84^{\circ}$ $y = 96^{\circ}$ $\angle BCD = 2 \ge 26^{\circ} = 52^{\circ}$ In $\triangle BCD$, As BC = CD[Given] $\angle CBD = \angle CDB = x$ [Angles opposite to equal sides are equal] $\angle CBD + \angle CDB + \angle BCD = 180^{\circ}$ $x + x + 52^{\circ} = 180^{\circ}$ $2x + 52^{\circ} = 180^{\circ}$ $2x = 180^{\circ} - 52^{\circ}$ $x = 128^{\circ}/2$ $x = 64^{\circ}$ Hence, $x = 64^{\circ}$ and $y = 90^{\circ}$.

5. Find the size of each lettered angle in the following figures:

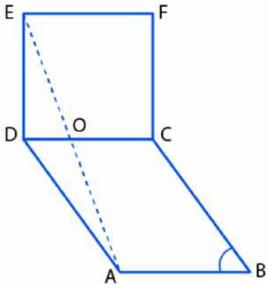


 $\angle BCD = 130^{\circ} \dots$ (ii) In pentagon ABCDE, we have $\angle A + \angle B + \angle AED + \angle BCD + \angle x = 540^{\circ}$ [Sum of interior angles in pentagon is 540°] $90^{\circ} + 90^{\circ} 120^{\circ} + 130^{\circ} + x = 540^{\circ}$ $430^{\circ} + x = 540^{\circ}$ $x = 540^{\circ} - 430^{\circ}$ $x = 110^{\circ}$ Hence, value of x = 110°

(iii) In given figure, AD || BC [Given] $60^{\circ} + y = 180^{\circ} \text{ and } x + 110^{\circ} = 180^{\circ}$ $y = 180^{\circ} - 60^{\circ} \text{ and } x = 180^{\circ} - 110^{\circ}$ $y = 120^{\circ} \text{ and } x = 70^{\circ}$ Since, CD || AF [Given] $\angle FAD = 70^{\circ} \dots$ (i) In quadrilateral ADEF, $\angle FAD + 75^{\circ} + z + 130^{\circ} = 360^{\circ}$ $70^{\circ} + 75^{\circ} + z + 130^{\circ} = 360^{\circ}$ $275^{\circ} + z = 360^{\circ}$ $z = 360^{\circ} - 275^{\circ} = 85^{\circ}$ Hence, $x = 70^{\circ}, y = 120^{\circ} \text{ and } z = 85^{\circ}$

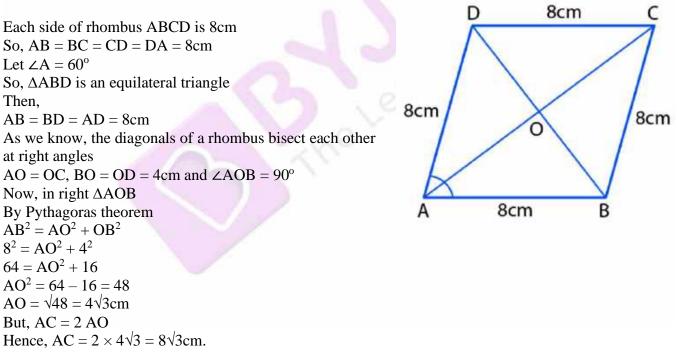
6. In the adjoining figure, ABCD is a rhombus and DCFE is a square. If ∠ABC = 56°, find (i) ∠DAG (ii) ∠FEG (iii) ∠GAC (iv) ∠AGC. Solution:

Here ABCD and DCFE is a rhombus and square respectively. So, $AB = BC = DC = AD \dots (i)$ E Also, $DC = EF = FC = EF \dots$ (ii) From (i) and (ii), we have $AB = BC = DC = AD = EF = FC = EF \dots$ (iii) $\angle ABC = 56^{\circ}$ [Given] $\angle ADC = 56^{\circ}$ [Opposite angle in rhombus are equal] So, $\angle EDA = \angle EDC + \angle ADC = 90^{\circ} + 56^{\circ} = 146^{\circ}$ In $\triangle ADE$, DE = AD[From (iii)] [Equal sides have equal opposite $\angle DEA = \angle DAE$ angles] $\angle DEA = \angle DAG = (180^{\circ} - \angle EDA)/2$ $=(180^{\circ}-146^{\circ})/2$ $= 34^{\circ}/2 = 17^{\circ}$ $\Rightarrow \angle DAG = 17^{\circ}$ Also, $\angle DEG = 17^{\circ}$ $\angle FEG = \angle E - \angle DEG$ $=90^{\circ} - 17^{\circ}$

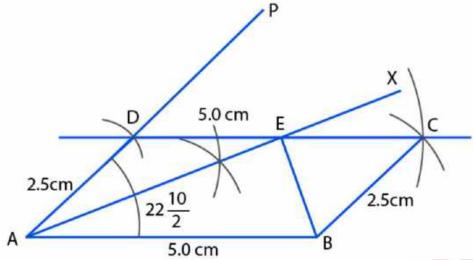


 $= 73^{\circ}$ In rhombus ABCD, $\angle DAB = 180^{\circ} - 56^{\circ} = 124^{\circ}$ $\angle DAC = 124^{\circ}/2$ [Since, AC diagonals bisect the $\angle A$] $\angle DAC = 62^{\circ}$ $\angle GAC = \angle DAC - \angle DAG$ $= 62^{\circ} - 17^{\circ}$ $= 45^{\circ}$ In ΔEDG , $\angle D + \angle DEG + \angle DGE = 180^{\circ}$ [Angles sum property of a triangle] $90^{\circ} + 17^{\circ} + \angle DGE = 180^{\circ}$ $\angle DGE = 180^{\circ} - 107^{\circ} = 73^{\circ} \dots (iv)$ Thus, $\angle AGC = \angle DGE \dots (v)$ [Vertically opposite angles] Hence from (iv) and (v), we have $\angle AGC = 73^{\circ}$

7. If one angle of a rhombus is 60° and the length of a side is 8 cm, find the lengths of its diagonals. Solution:



8. Using ruler and compasses only, construct a parallelogram ABCD with AB = 5 cm, AD = 2.5 cm and $\angle BAD = 45^{\circ}$. If the bisector of $\angle BAD$ meets DC at E, prove that $\angle AEB$ is a right angle. Solution:



Steps of construction:

(i) Draw AB = 5.0cm

(ii) Draw $BAP = 45^{\circ}$ on side AB

(iii) Take A as centre and radius 2.5cm cut the line AP at D

(iv) Take D as centre and radius 5.0cm draw an arc

(v) Take B as centre and radius equal to 2.5cm cut the arc of step (iv) at C

(vi) Join BC and CD

(vii) ABCD is the required parallelogram

(viii) Draw the bisector of $\angle BAD$, which cuts the DC at E

(ix) Join EB

(x) Measure $\angle AEB$ which is equal to 90°.