
Exercise 11.3

Page No: 186

1. There are two cuboidal boxes as shown in the adjoining figure. Which box requires the lesser amount of material to make?

Solution: (a) Given: Length of cuboidal box (l) = 60 cm

Breadth of cuboidal box (b) = 40 cm

Height of cuboidal box (h) = 50 cm

· Total surface area of cuboidal box = 2(lb + bh + hl)

$$= 2 (60 \times 40 + 40 \times 50 + 50 \times 60)$$

$$= 2 (2400 + 2000 + 3000)$$

 $= 14800 \text{ cm}^2$

(b) Length of cubical box (l) = 50 cm

Breadth of cubical box (b) = 50 cm

Height of cubical box (h) = 50 cm

 \therefore Total surface area of cubical box = 6(side)²

$$=6(50 \times 50) = 6(2500)$$

= 15000

Surface area of the cubical box is 15000 cm²

From the result of (a) and (b), cuboidal box requires the lesser amount of material to make.

2. A suitcase with measures $80 \text{ cm} \times 48 \text{ cm} \times 24 \text{ cm}$ is to be covered with a tarpaulin cloth. How many meters of tarpaulin of width 96 cm is required to cover 100 such suitcases?

Solution: Length of suitcase box, l = 80 cm,

Breadth of suitcase box, b= 48 cm

And Height of cuboidal box, h = 24 cm

Total surface area of suitcase box = 2(lb + bh + hl)

$$= 2 (80 \times 48 + 48 \times 24 + 24 \times 80)$$

$$= 2 (3840 + 1152 + 1920)$$

$$= 2 \times 6912$$

$$= 13824$$

Total surface area of suitcase box is $13824\ cm^2$

Area of Tarpaulin cloth = Surface area of suitcase

$$l x b = 13824$$

$$1 \times 96 = 13824$$

$$l = 144$$

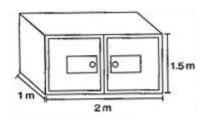
Required tarpaulin for 100 suitcases = $144 \times 100 = 14400 \text{ cm} = 144 \text{ m}$

3. Find the side of a cube whose surface area is 600 cm².

Solution: Surface area of cube = 600 cm² (Given)

Formula for surface area of a cube = $6(side)^2$

Substituting the values, we get


$$6(side)^2 = 600$$

$$(side)^2 = 100$$

Or side =
$$\pm 10$$

Since side cannot be negative, the measure of each side of a cube is 10 cm

4. Rukshar painted the outside of the cabinet of measure 1 m \times 2 m \times 1.5 m. How much surface area did she cover if she painted all except the bottom of the cabinet?

Solution: Length of cabinet, l = 2 m, Breadth of cabinet, b = 1 m and Height of cabinet, h = 1.5 m

$$= 2 \times 1 + 2 (1 \times 1.5 + 1.5 \times 2)$$

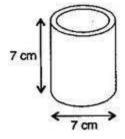
$$= 2 + 2 (1.5 + 3.0)$$

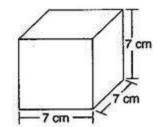
$$= 2 + 9.0 = 11$$

Required surface area of cabinet is 11m².

5. Daniel is paining the walls and ceiling of a cuboidal hall with length, breadth and height of 15 m, 10 m and 7 m respectively. From each can of paint 100 m^2 of area is painted. How many cans of paint will she need to paint the room?

Solution: Length of wall, l = 15 m, Breadth of wall, b = 10 m and Height of wall, h = 7 m


- · Total Surface area of classroom = lb + 2 (bh + hl)
- $= 15 \times 10 + 2 (10 \times 7 + 7 \times 15)$
- = 150 + 2 (70 + 105)
- = 150 + 350
- = 500


Now, Required number of cans = Area of hall / Area of one can

$$=500/100=5$$

Therefore, 5 cans are required to paint the room.

6. Describe how the two figures below are alike and how they are different. Which box has larger lateral surface areas?

Solution:

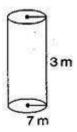
Diameter of cylinder = 7 cm (Given)

Radius of cylinder, r = 7/2 cm

Height of cylinder, h = 7 cm

Lateral surface area of cylinder = $2 \pi r h$

$$= 2 \times 22/7 \times 7/2 \times 7 = 154$$


So, Lateral surface area of cylinder is 154 cm 2 Now, lateral surface area of cube = $4 \text{ (side)}^2 = 4 \times 7^2 = 4 \times 49 = 196$

Lateral surface area of cube is 196 cm²

Hence, the cube has larger lateral surface area.

7. A closed cylindrical tank of radius 7 m and height 3 m is made from a sheet of metal. How much sheet of metal is required?

Solution:

Radius of cylindrical tank, r = 7 m

Height of cylindrical tank, h = 3 m

Total surface area of cylindrical tank = 2 $\pi\,r\,$ (h + r)

$$= 2 \times 22/7 \times 7 (3+7)$$

$$= 44 \times 10 = 440$$

Therefore, 440 m² metal sheet is required.

8. The lateral surface area of a hollow cylinder is 4224 cm². It is cut along its height and formed a rectangular sheet of width 33 cm. Find the perimeter of rectangular sheet?

Solution: Lateral surface area of hollow cylinder = 4224 cm²

Height of hollow cylinder, h = 33 cm and say r be the radius of the hollow cylinder

Curved surface area of hollow cylinder = $2 \pi r h$

$$4224 = 2 \times \pi \times r \times 33$$

$$r = (4224)/(2 \pi x 33)$$

$$r = 64 / \pi$$

Now, Length of rectangular sheet, $l = 2 \pi r$

$$l = 2 \pi (64 / \pi) = 128$$
 (using value of r)

So the length of the rectangular sheet is $128\ cm$.

Also, Perimeter of rectangular sheet = 2(l+b)

$$= 2 (128 + 33)$$

$$= 322$$

The perimeter of rectangular sheet is 322 cm.

9. A road roller takes 750 complete revolutions to move once over to level a road. Find the area of the road if the diameter of a road roller is 84 cm and length 1 m.

Solution:

Diameter of road roller, d = 84 cm

Radius of road roller, r = d/2 = 84/2 = 42 cm

Length of road roller, h = 1 m = 100 cm

Formula for Curved surface area of road roller = $2 \pi r h$ = $2 \times 22/7 \times 42 \times 100 = 26400$ Curved surface area of road roller is 26400 cm^2 Again, Area covered by road roller in 750 revolutions = $26400 \times 750 \text{ cm}^2$

= 1,98,00,000 cm^2

= 1980 m² [: 1 m^2 = 10,000 cm²]

Hence the area of the road is 1980 m².

10. A company packages its milk powder in cylindrical container whose base has a diameter of 14 cm and height 20 cm. Company places a label around the surface of the container (as shown in figure). If the label is placed 2 cm from top and bottom, what is the area of the label?

Solution: Diameter of cylindrical container, d = 14 cm

Radius of cylindrical container, r = d/2 = 14/2 = 7 cm

Height of cylindrical container = 20 cm

Height of the label, say h = 20 - 2 - 2 (from the figure)

= 16 cm

Curved surface area of label = $2 \pi r h$

$$= 2 \times 22/7 \times 7 \times 16$$

= 704

Hence, the area of the label is 704 cm².