Exercise: 12.3 (Page No: 234)

1. Find the area of the shaded region in Fig. 12.19, if PQ = 24 cm, PR = 7 cm and O is the centre of the circle.

Fig. 12.19

Solution:

Here, ∠P is in the semi-circle and so,

So, it can be concluded that QR is hypotenuse of the circle and is equal to the diameter of the circle.

$$\therefore$$
 QR = D

Using Pythagorean theorem,

$$QR^2 = PR^2 + PQ^2$$

Or,
$$QR^2 = 7^2 + 24^2$$

Hence, the radius of the circle = 25/2 cm

Now, the area of the semicircle = $(\pi R^2)/2$

$$= (22/7 \times 25/2 \times 25/2)/2 \text{ cm}^2$$

Also, area of the $\triangle PQR = \frac{1}{2} \times PR \times PQ$

$$= \frac{1}{2} \times 7 \times 24 \text{ cm}^2$$

$$= 84 \text{ cm}^2$$

Hence, the area of the shaded region = $245.54 \text{ cm}^2 - 84 \text{ cm}^2$

$$= 161.54 \text{ cm}^2$$

2. Find the area of the shaded region in Fig. 12.20, if radii of the two concentric circles with centre O are 7 cm and 14 cm respectively and ∠AOC = 40°.

Solution:

Fig. 12.20

Given,

Angle made by sector = 40°,

Radius the inner circle = r = 7 cm, and

Radius of the outer circle = R = 14 cm

We know,

Area of the sector = $(\theta/360^{\circ}) \times \pi r^2$

So, Area of OAC = $(40^{\circ}/360^{\circ}) \times \pi r^{2} cm^{2}$

 $= 68.44 \text{ cm}^2$

Area of the sector OBD = $(40^{\circ}/360^{\circ}) \times \pi r^2 \text{ cm}^2$

$$= 1/9 \times 22/7 \times 7^2 = 17.11 \text{ cm}^2$$

Now, area of the shaded region ABDC = Area of OAC - Area of the OBD

$$= 68.44 \text{ cm}^2 - 17.11 \text{ cm}^2 = 51.33 \text{ cm}^2$$

3. Find the area of the shaded region in Fig. 12.21, if ABCD is a square of side 14 cm and APD and BPC are semicircles.

Fig. 12.21

Solution:

Side of the square ABCD (as given) = 14 cm

So, Area of ABCD = a^2

 $= 14 \times 14 \text{ cm}^2 = 196 \text{ cm}^2$

We know that the side of the square = diameter of the circle = 14 cm

So, side of the square = diameter of the semicircle = 14 cm

∴ Radius of the semicircle = 7 cm

Now, area of the semicircle = $(\pi R^2)/2$

 $= (22/7 \times 7 \times 7)/2 \text{ cm}^2 =$

$$= 77 \text{ cm}^2$$

$$\therefore$$
 Area of two semicircles = 2 × 77 cm² = 154 cm²

Hence, area of the shaded region = Area of the Square - Area of two semicircle

$$= 196 \text{ cm}^2 - 154 \text{ cm}^2$$

$$= 42 \text{ cm}^2$$

4. Find the area of the shaded region in Fig. 12.22, where a circular arc of radius 6 cm has been drawn with vertex O of an equilateral triangle OAB of side 12 cm as centre.

Solution:

It is given that OAB is an equilateral triangle having each angle as 60°

Area of the sector is common in both.

Radius of the circle = 6 cm.

Side of the triangle = 12 cm.

Area of the equilateral triangle = $\sqrt{3}/4 \times (OA)^2 = \sqrt{3}/4 \times 12^2 = 36\sqrt{3} \text{ cm}^2$

Area of the circle = $\pi R^2 = 22/7 \times 6^2 = 792/7 \text{ cm}^2$

Area of the sector making angle $60^{\circ} = (60^{\circ}/360^{\circ}) \times \pi r^{2} \text{ cm}^{2}$

$$= 1/6 \times 22/7 \times 6^2 \text{ cm}^2 = 132/7 \text{ cm}^2$$

Area of the shaded region = Area of the equilateral triangle + Area of the circle - Area of the sector

- $= 36\sqrt{3} \text{ cm}^2 + 792/7 \text{ cm}^2 132/7 \text{ cm}^2$
- $= (36\sqrt{3} + 660/7) \text{ cm}^2$
- 5. From each corner of a square of side 4 cm a quadrant of a circle of radius 1 cm is cut and also a circle of diameter 2 cm is cut as shown in Fig. 12.23. Find the area of the remaining portion of the square.

Solution:

Side of the square = 4 cm

Radius of the circle = 1 cm

Four quadrant of a circle are cut from corner and one circle of radius are cut from middle.

Area of square = $(side)^2 = 4^2 = 16 \text{ cm}^2$

Area of the quadrant = $(\pi R^2)/4 \text{ cm}^2 = (22/7 \times 1^2)/4 = 11/14 \text{ cm}^2$

∴ Total area of the 4 quadrants = $4 \times (11/14)$ cm² = 22/7 cm²

Area of the circle = $\pi R^2 \text{ cm}^2 = (22/7 \times 1^2) = 22/7 \text{ cm}^2$

Area of the shaded region = Area of square - (Area of the 4 quadrants + Area of the circle)

=
$$16 \text{ cm}^2$$
 - $(22/7 + 22/7) \text{ cm}^2$
= $68/7 \text{ cm}^2$

6. In a circular table cover of radius 32 cm, a design is formed leaving an equilateral triangle ABC in the middle as shown in Fig. 12.24. Find the area of the design.

Fig. 12.24

Solution:

Radius of the circle = 32 cm

Draw a median AD of the triangle passing through the centre of the circle.

$$\Rightarrow$$
BD = AB/2

Since, AD is the median of the triangle

∴ AO = Radius of the circle = 2/3 AD

 \Rightarrow 2/3 AD = 32 cm

⇒AD = 48 cm

In ΔADB,

By Pythagoras theorem,

$$AB^2 = AD^2 + BD^2$$

$$\Rightarrow AB^2 = 48^2 + (AB/2)^2$$

$$\Rightarrow AB^2 = 2304 + AB^2/4$$

$$\Rightarrow$$
3/4 (AB²) = 2304

$$\Rightarrow AB^2 = 3072$$

Area of
$$\triangle ADB = \sqrt{3}/4 \times (32\sqrt{3})^2 \text{ cm}^2 = 768\sqrt{3} \text{ cm}^2$$

Area of circle =
$$\pi$$
 R² = 22/7 × 32 × 32 = 22528/7 cm²

Area of the design = Area of circle - Area of $\triangle ADB$

$$= (22528/7 - 768\sqrt{3}) \text{ cm}^2$$

7. In Fig. 12.25, ABCD is a square of side 14 cm. With centres A, B, C and D, four circles are drawn such that each circle touch externally two of the remaining three circles. Find the area of the shaded region.

Fig. 12.25

Solution:

Side of square = 14 cm

Four quadrants are included in the four sides of the square.

Area of the square ABCD =
$$14^2$$
 = 196 cm^2

Area of the quadrant =
$$(\pi R^2)/4 \text{ cm}^2 = (22/7 \times 7^2)/4 \text{ cm}^2$$

$$= 77/2 \text{ cm}^2$$

Total area of the quadrant = $4 \times 77/2$ cm² = 154 cm²

Area of the shaded region = Area of the square ABCD - Area of the quadrant

$$= 196 \text{ cm}^2 - 154 \text{ cm}^2$$

$$= 42 \text{ cm}^2$$

8. Fig. 12.26 depicts a racing track whose left and right ends are semicircular.

The distance between the two inner parallel line segments is 60 m and they are each 106 m long. If

the track is 10 m wide, find:

- (i) the distance around the track along its inner edge
- (ii) the area of the track.

Fig. 12.26

Solution:

Width of the track = 10 m

Distance between two parallel lines = 60 m

Length of parallel tracks = 106 m

DE = CF = 60 m

Radius of inner semicircle, r = OD = O'C

$$= 60/2 \text{ m} = 30 \text{ m}$$

Radius of outer semicircle, R = OA = O'B

$$= 30 + 10 \text{ m} = 40 \text{ m}$$

Also, AB = CD = EF = GH = 106 m

Distance around the track along its inner edge = $CD + EF + 2 \times (Circumference of inner semicircle)$

=
$$106 + 106 + (2 \times \pi r)$$
 m = $212 + (2 \times 22/7 \times 30)$ m

Area of the track = Area of ABCD + Area EFGH + $2 \times$ (area of outer semicircle) - $2 \times$ (area of inner

= (AB × CD) + (EF × GH) + 2 ×
$$(\pi r^2/2)$$
 - 2 × $(\pi R^2/2)$ m²

=
$$(106 \times 10) + (106 \times 10) + 2 \times \pi/2 (r^2 - R^2) m^2$$

$$= 2120 + 22/7 \times 70 \times 10 \text{ m}^2$$

$$= 4320 \text{ m}^2$$

9. In Fig. 12.27, AB and CD are two diameters of a circle (with centre O) perpendicular to each other

and OD is the diameter of the smaller circle. If OA = 7 cm, find the area of the shaded region.

Fig. 12.27

Solution:

Radius of larger circle, R = 7 cm

Radius of smaller circle, r = 7/2 cm

Height of $\Delta BCA = OC = 7$ cm

Base of $\triangle BCA = AB = 14$ cm

Area of $\triangle BCA = 1/2 \times AB \times OC = 1/2 \times 7 \times 14 = 49 \text{ cm}^2$

Area of larger circle = πR^2 = 22/7 × 7^2 = 154 cm²

Area of larger semicircle = $154/2 \text{ cm}^2 = 77 \text{ cm}^2$

Area of smaller circle = $\pi r^2 = 22/7 \times 7/2 \times 7/2 = 77/2 \text{ cm}^2$

Area of the shaded region = Area of larger circle - Area of triangle - Area of larger semicircle + Area of smaller circle

Area of the shaded region = (154 - 49 - 77 + 77/2) cm²

$$= 133/2 \text{ cm}^2 = 66.5 \text{ cm}^2$$

10. The area of an equilateral triangle ABC is 17320.5 cm². With each vertex of the triangle as centre, a circle is drawn with radius equal to half the length of the side of the triangle (see Fig. 12.28). Find the area of the shaded region. (Use π = 3.14 and $\sqrt{3}$ = 1.73205)

Fig. 12.28

Solution:

ABC is an equilateral triangle.

$$\therefore \angle A = \angle B = \angle C = 60^{\circ}$$

There are three sectors each making 60°.

Area of $\triangle ABC = 17320.5 \text{ cm}^2$

$$\Rightarrow$$
V3/4 × (side)² = 17320.5

$$\Rightarrow$$
(side)² = 17320.5 × 4/1.73205

$$\Rightarrow$$
(side)² = 4 × 10⁴

Radius of the circles = 200/2 cm = 100 cm

Area of the sector = $(60^{\circ}/360^{\circ}) \times \pi r^2 \text{ cm}^2$

$$= 1/6 \times 3.14 \times (100)^2 \text{ cm}^2$$

$$= 15700/3 \text{ cm}^2$$

Area of 3 sectors = $3 \times 15700/3 = 15700 \text{ cm}^2 =$

Area of the shaded region = Area of equilateral triangle ABC - Area of 3 sectors

$$= 17320.5 - 15700 \text{ cm}^2 = 1620.5 \text{ cm}^2$$

11. On a square handkerchief, nine circular designs each of radius 7 cm are made (see Fig. 12.29). Find the area of the remaining portion of the handkerchief.

Fig. 12.29

Solution:

Number of circular design = 9

Radius of the circular design = 7 cm

There are three circles in one side of square handkerchief.

 \therefore Side of the square = 3 × diameter of circle = 3 × 14 = 42 cm

Area of the square = $42 \times 42 \text{ cm}^2 = 1764 \text{ cm}^2$

Area of the circle = π r² = 22/7 × 7 × 7 = 154 cm²

Total area of the design = $9 \times 154 = 1386 \text{ cm}^2$

Area of the remaining portion of the handkerchief = Area of the square - Total area of the design

12. In Fig. 12.30, OACB is a quadrant of a circle with centre O and radius 3.5 cm. If OD = 2 cm, find the area of the

- (i) quadrant OACB,
- (ii) shaded region.

Solution:

Radius of the quadrant = 3.5 cm = 7/2 cm

(i) Area of quadrant OACB = $(\pi R^2)/4$ cm²

 $= (22/7 \times 7/2 \times 7/2)/4 \text{ cm}^2$

 $= 77/8 \text{ cm}^2$

(ii) Area of triangle BOD = $1/2 \times 7/2 \times 2 \text{ cm}^2$

 $= 7/2 \text{ cm}^2$

Area of shaded region = Area of quadrant - Area of triangle BOD

 $= (77/8 - 7/2) \text{ cm}^2 = 49/8 \text{ cm}^2$

 $= 6.125 \text{ cm}^2$

13. In Fig. 12.31, a square OABC is inscribed in a quadrant OPBQ. If OA = 20 cm, find the area of the shaded region. (Use π = 3.14)

Fig. 12.31 \

Solution:

Side of square = OA = AB = 20 cm

Radius of the quadrant = OB

OAB is right angled triangle

By Pythagoras theorem in ΔOAB ,

$$OB^2 = AB^2 + OA^2$$

$$\Rightarrow$$
OB² = 20² + 20²

$$\Rightarrow$$
OB² = 400 + 400

$$\Rightarrow$$
OB² = 800

Area of the quadrant = $(\pi R^2)/4$ cm² = $3.14/4 \times (20 \text{V}2)^2$ cm² = 628 cm²

Area of the square = $20 \times 20 = 400 \text{ cm}^2$

Area of the shaded region = Area of the quadrant - Area of the square

$$= 628 - 400 \text{ cm}^2 = 228 \text{ cm}^2$$

14. AB and CD are respectively arcs of two concentric circles of radii 21 cm and 7 cm and centre O (see Fig. 12.32). If ∠AOB = 30°, find the area of the shaded region.

Fig. 12.32

Solution:

Radius of the larger circle, R = 21 cm

Radius of the smaller circle, r = 7 cm

Angle made by sectors of both concentric circles = 30°

Area of the larger sector = $(30^{\circ}/360^{\circ}) \times \pi R^{2} cm^{2}$

$$= 1/12 \times 22/7 \times 21^2 \text{ cm}^2$$

$$= 231/2 \text{ cm}^2$$

Area of the smaller circle = $(30^{\circ}/360^{\circ}) \times \pi r^2 \text{ cm}^2$

$$= 1/12 \times 22/7 \times 7^2 \text{ cm}^2$$

$$= 77/6 \text{ cm}^2$$

Area of the shaded region = $231/2 - 77/6 \text{ cm}^2$

$$= 616/6 \text{ cm}^2 = 308/3 \text{ cm}^2$$

15. In Fig. 12.33, ABC is a quadrant of a circle of radius 14 cm and a semicircle is drawn with BC

as diameter. Find the area of the shaded region.

Fig. 12.33

Solution:

Radius of the the quadrant ABC of circle = 14 cm

AB = AC = 14 cm

BC is diameter of semicircle.

ABC is right angled triangle.

By Pythagoras theorem in ΔABC,

$$BC^2 = AB^2 + AC^2$$

$$\Rightarrow$$
BC² = 14² + 14²

Radius of semicircle = $14\sqrt{2}/2$ cm = $7\sqrt{2}$ cm

Area of $\triangle ABC = 1/2 \times 14 \times 14 = 98 \text{ cm}^2$

Area of quadrant = $1/4 \times 22/7 \times 14 \times 14 = 154 \text{ cm}^2$

Area of the semicircle = $1/2 \times 22/7 \times 7\sqrt{2} \times 7\sqrt{2} = 154 \text{ cm}^2$

Area of the shaded region = Area of the semicircle + Area of \triangle ABC - Area of quadrant

$$= 154 + 98 - 154 \text{ cm}^2 = 98 \text{ cm}^2$$

16. Calculate the area of the designed region in Fig. 12.34 common between the two quadrants of circles of radius 8 cm each.

Solution:

Fig. 12.34

$$AB = BC = CD = AD = 8 cm$$

Area of $\triangle ABC$ = Area of $\triangle ADC$ = $1/2 \times 8 \times 8 = 32$ cm²

Area of quadrant AECB = Area of quadrant AFCD = $1/4 \times 22/7 \times 8^2$

$$= 352/7 \text{ cm}^2$$

Area of shaded region = (Area of quadrant AECB - Area of \triangle ABC) = (Area of quadrant AFCD - Area of \triangle ADC)

$$= (352/7 - 32) + (352/7 - 32) \text{ cm}^2$$

$$= 2 \times (352/7 -32) \text{ cm}^2$$

$$= 256/7 \text{ cm}^2$$