Exercise 4.3

Page No: 122

1. Find area of the triangle with vertices at the point given in each of the following:
(i) $(1,0),(6,0),(4,3)$
(ii) $(2,7),(1,1),(10,8)$
(iii) $(-2,-3),(3,2),(-1,-8)$

Solution:
Formula for Area of triangle:

$$
\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

(i)

$$
\begin{aligned}
& \frac{1}{2}\left|\begin{array}{lll}
1 & 0 & 1 \\
6 & 0 & 1 \\
4 & 3 & 1
\end{array}\right| \\
& =\frac{1}{2}[1(0-3)-0(6-4)+1(18-0)] \\
& =\frac{15}{2} \text { sq. units }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& \text { Area }=\frac{1}{2}\left|\begin{array}{lll}
2 & 7 & 1 \\
1 & 1 & 1 \\
10 & 8 & 1
\end{array}\right| \\
& =\frac{1}{2}[2(1-8)-7(1-10)+1(8-10)] \\
& =\frac{47}{2} \text { sq. unit }
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \text { Area }=\frac{1}{2}\left|\begin{array}{ccc}
-2 & -3 & 1 \\
3 & 2 & 1 \\
-1 & -8 & 1
\end{array}\right| \\
& =\frac{1}{2}[-2(10)+3(4)-22] \\
& =15 \text { sq. Units }
\end{aligned}
$$

2. Show that points: $A(a, b+c), B(b, c+a), C(c, a+b)$ are collinear.

Solution:

Points are collinear if area of triangle is equal to zero.
i.e. Area of triangle $=0$

$$
\begin{aligned}
& \text { Area of Triangle }=\frac{1}{2}\left|\begin{array}{lll}
a & b+c & 1 \\
b & c+a & 1 \\
c & a+b & 1
\end{array}\right| \\
& =\frac{1}{2}[a(c+a-a-b)-(b+c)(b-c)+1\{b(a+b)-c(c+a)\}] \\
& =\frac{1}{2}\left(a c-a b-b^{2}+c^{2}+a b+b^{2}-c^{2}-a c\right) \\
& =0
\end{aligned}
$$

Therefore, points are collinear.
3. Find values of k if area of triangle is $\mathbf{4}$ sq. units and vertices are
(i) $(k, 0),(4,0),(0,2)$
(ii) $(-2,0),(0,4),(0, k)$

Solution:
(i)

Area of triangle $= \pm 4$ (Given)
$\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=4$
$\frac{1}{2}[k(0-2)-0+1(8-0)]=4$
$1 / 2(-2 k+4)=4$
$-k+4=4$
Now: -k $+4= \pm 4$
$-k+4=4$ and $-k+4=-4$
$\mathrm{k}=0$ and $\mathrm{k}=8$
(ii)

$$
\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=4
$$

$\frac{1}{2}\left|\begin{array}{lll}-2 & 0 & 1 \\ 0 & 4 & 1 \\ 0 & k & 1\end{array}\right|=4$
$1 / 2(-8+2 k)=4$
or $-k+4=4$
Now: -k $+4= \pm 4$
$-k+4=4$ and $-k+4=-4$
$\mathrm{k}=0$ and $\mathrm{k}=8$
4. (i) Find equation of line joining $(1,2)$ and $(3,6)$ using determinants.
(ii) Find equation of line joining $(3,1)$ and $(9,3)$ using determinants.

Solution:

Let $A(x, y)$ be any vertex of a triangle.
All points are on one line if area of triangle is zero.
$\frac{1}{2}\left|\begin{array}{lll}1 & 2 & 1 \\ 3 & 6 & 1 \\ x & y & 1\end{array}\right|=0$
$\frac{1}{2}[x(2-6)-y(1-3)+1(6-6)]=0$
$-4 x+2 y=0$
$y=2 x$
Which is equation of line.
(ii) Let $A(x, y)$ be any vertex of a triangle.

All points are on one line if area of triangle is zero.
$\frac{1}{2}\left|\begin{array}{lll}x & y & 1 \\ 3 & 1 & 1 \\ 9 & 3 & 1\end{array}\right|=0$
$\frac{1}{2}[x(1-3)-y(3-9)+1(9-9)]=0$
$-2 x+6 y=0$
$x-3 y=0$
Which is equation of line.
12. If area of triangle is 35 sq units with vertices $(2,-6),(5,4)$ and $(k, 4)$. Then k is
(A) 12
(B) $\mathbf{- 2}$
(C) $-12,-2$
(D) 12, -2

Solution:

Option (D) is correct.
Explanation:

$$
\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|=35
$$

$$
\frac{1}{2}[2(4-4)-(-6)(5-k)+1(20-4 k)]=35
$$

Solving above expression, we have
$25-5 k= \pm 35$
$25-5 k=35$ and $25-5 k=-35$
$k=-2$ and $k=12$.

