Exercise 6.3

1. Find the slope of tangent to the curve ${ }^{y=3 x^{4}-4 x}$ at $\mathbf{x}=4$.

Solution:

Equation of the curve $y=3 x^{4}-4 x$
Slope of the tangent to the curve $=$ Value of $\frac{d y}{d x}$ at the point (x, y).

$$
\frac{d y}{d x}=3\left(4 x^{3}\right)-4=12 x^{3}-4
$$

Slope of the tangent at point $x=4$ to the curve (1)

$$
={ }^{12(4)^{3}-4}=764
$$

2. Find the slope of tangent to the curve $y=\frac{x-1}{x-2}, x \neq 2$ at $\mathrm{x}=10$.

Solution:

Equation of the curve ${ }^{y=\frac{x-1}{x-2}}$
Derivate y w.r.t. x,

$$
\begin{align*}
& \frac{d y}{d x}=\frac{(x-2) \frac{d}{d x}(x-1)-(x-1) \frac{d}{d x}(x-2)}{(x-2)^{2}} \\
& = \\
& =\frac{(x-2)-(x-1)}{(x-2)^{2}} \tag{2}\\
& =\frac{-1}{(x-2)^{2}} \ldots \ldots . .(2)
\end{align*}
$$

Slope of the tangent at point $\mathrm{x}=10$ to the curve (1)
$=\frac{-1}{(10-2)^{2}}$
$=\frac{-1}{8^{2}}=\frac{-1}{64}$
3. Find the slope of tangent to the curve ${ }^{y=x^{3}-x+1}$ at the given point whose ${ }^{x-}$ coordinate is 2.

Solution:

Equation of the curve $y=x^{3}-x+1$
Apply derivate w.r.t x,

$$
\begin{equation*}
\frac{d y}{d x}=3 x^{2}-1 \tag{1}
\end{equation*}
$$

Slope of the tangent at point $x=2$ to the curve (1)
$=3(2)^{2}-1=11$
4. Find the slope of tangent to the curve $y=x^{3}-3 x+2$ at the given point whose \mathbf{x} coordinate is 3 .

Solution:

Equation of the curve $y=x^{3}-3 x+2$
Apply derivate w.r.t x,

$$
\frac{d y}{d x}=3 x^{2}-3
$$

Slope of the tangent at point $x=3$ to the curve (1)
$=3(3)^{2}-3=24$
5. Find the slope of the normal to the curve $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$ at $\theta=\frac{\pi}{4}$.

Solution:
Equations of the curves are $x=a \cos ^{3} \theta, y=a \sin ^{3} \theta$

$$
x=a \cos ^{3} \theta
$$

Apply derivate w.r.t x,

$$
\begin{align*}
& \frac{d x}{d \theta}=a \frac{d}{d \theta}(\cos \theta)^{3} \\
& =\frac{a \cdot 3(\cos \theta)^{2} \frac{d}{d \theta}(\cos \theta)}{} \quad \Rightarrow \frac{d x}{d \theta}=-3 a \cos ^{2} \theta \sin \theta
\end{align*}
$$

And,

$$
y=a \sin ^{3} \theta
$$

Apply derivate w.r.t x,
$\frac{d y}{d \theta}=a \frac{d}{d \theta}(\sin \theta)^{3}$
a. $3(\sin \theta)^{2} \frac{d}{d \theta}(\sin \theta)$

$$
\begin{equation*}
\frac{d y}{d \theta}=3 a \sin ^{2} \theta \cos \theta \tag{2}
\end{equation*}
$$

Using (1) and (2), we have

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{3 a \sin ^{2} \theta \cos \theta}{-3 a \cos ^{2} \theta \sin \theta} \\
& =\frac{-\sin \theta}{\cos \theta}=-\tan \theta
\end{aligned}
$$

Now,

$$
\text { Slope of the tangent at } \theta=\frac{\pi}{4}
$$

$$
=-\tan \frac{\pi}{4}=-1
$$

And Slope of the normal at $\theta=\frac{\pi}{4}$
$=\frac{-1}{m}=\frac{-1}{-1}=1$
6. Find the slope of the normal to the curve $x=1-a \sin \theta=y=b \cos ^{2} \theta$ at $\theta=\frac{\pi}{2}$.

Solution:

Equations of the curves are $x=1-a \sin \theta$ and $y=b \cos ^{2} \theta$.

$$
x=1-a \sin \theta
$$

Apply derivative w.r.t. x, we have

$$
\begin{aligned}
& \frac{d x}{d \theta}=0-a \cos \theta \\
& \Rightarrow \frac{d x}{d \theta}=-a \cos \theta
\end{aligned}
$$

Again,

$$
y=b \cos ^{2} \theta
$$

Apply derivative w.r.t. x , we have

$$
\begin{aligned}
& \frac{d y}{d \theta}=b \frac{d}{d \theta}(\cos \theta)^{2} \\
& \frac{d y}{d \theta}=b \cdot 2 \cos \theta \frac{d}{d \theta} \cos \theta=-2 b \cos \theta \sin \theta
\end{aligned}
$$

Now,

$$
\frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{-2 b \cos \theta \sin \theta}{-a \cos \theta}
$$

$=\frac{2 b}{a} \sin \theta$
Again, Slope of the tangent at $\theta=\frac{\pi}{2}$
$=\frac{2 b}{a} \sin \frac{\pi}{2}=\frac{2 b}{a}$
And Slope of the normal at $\theta=\frac{\pi}{2}$
$=\frac{-1}{m}=\frac{-1}{2 b / a}$
$=\frac{-a}{2 b}$
7. Find the point at which the tangent to the curve ${ }^{y=x^{3}-3 x^{2}-9 x+7}$ is parallel to the x axis.
Solution:
Equation of the curve $y=x^{3}-3 x^{2}-9 x+7$

$$
\begin{equation*}
\frac{d y}{d x}=3 x^{2}-6 x-9 \tag{1}
\end{equation*}
$$

Since, the tangent is parallel to the x-axis, so, $\frac{d y}{d x}=0$

$$
\begin{aligned}
& 3 x^{2}-6 x-9=0 \\
& x^{2}-2 x-3=0 \\
& (x-3)(x+1)=0 \\
& x=3, x=-1
\end{aligned}
$$

From equation (1), when $x=3$.
$y=27-27-27+7=-20$
when $x=-1, y=-1-3+9+7=12$
Therefore, the required points are $(3,-20)$ and $(-1,12)$.
8. Find the point on the curve ${ }^{y=(x-2)^{2}}$ at which the tangent is parallel to the chord joining the points $(2,0)$ and $(4,4)$.

Solution: Let the given points are $\mathrm{M}(2,0)$ and $\mathrm{N}(4,4)$.
Slope of the chord, MN $=\frac{4-0}{4-2}=2$
$\left[\because m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right]$
Equation of the curve is $y=(x-2)^{2}$ (Given)
Slope of the tangent at (x, y)
$=\frac{d y}{d x}=2(x-2)$
If the tangent is parallel to the chord MN , then
Slope of tangent $=$ Slope of chord

$$
\begin{aligned}
& 2(x-2)=2 \\
& x=3
\end{aligned}
$$

Therefore, $y=(3-2)^{2}=1$
Therefore, the required point is $(3,1)$.
9. Find the point on the curve ${ }^{y=x^{3}-11 x+5}$ at which the tangent is $\mathbf{y}=\mathbf{x}-11$.

Solution:

Equation of the curve $y=x^{3}-11 x+5$
Equation of the tangent $y=x-11$
$\Rightarrow x-y-11=0$
Slope of the tangent at (x, y)
$=\frac{d y}{d x}=3 x^{2}-11 \quad$ [From equation (1)]

Slope of tangent $=\frac{-a}{b}=\frac{-1}{-1}=1$
[From equation (2)]
Therefore,

$$
\begin{aligned}
& 3 x^{2}-11=1 \\
& x^{2}=4 \\
& x= \pm 2
\end{aligned}
$$

From equation (1), when $x=2, y=8-22+5=-9$
And when $x=-2, y=-8+22+5=19$
We observed that, ${ }^{(-2,19)}$ does not satisfy equation (2), therefore the required point is ${ }^{(2,-9)}$.
10. Find the equation of all lines having slope -1 that are tangents to the
curve $y=\frac{1}{x-1}, x \neq 1$.
Solution:
Equation of the curve $y=\frac{1}{x-1}=(x-1)^{-1}$
$\frac{d y}{d x}=(-1)(x-1)^{-2} \frac{d}{d x}(x-1)$
$==^{\frac{-1}{(x-1)^{2}}}=$ Slope of the tangent at (x, y)
But according to given statement, slope $=-1$

$$
\begin{aligned}
& \frac{-1}{(x-1)^{2}}=-1 \\
& (x-1)^{2}=1 \\
& x-1= \pm 1
\end{aligned}
$$

$$
x=1+1=2 \text { or } x=1-1=0
$$

From equation (1), when $x=2$
$y=\frac{1}{2-1}=1$
And when $x=0$
$y=\frac{1}{0-1}=-1$
Points of contact are $(2,1)$ and $(0,-1)$.
And Equation of two tangents are $y-1=-1(x-2)$
$=x+y-3=0$ and
$y-(-1)=-1(x-0)=x+y+1=0$
11. Find the equations of all lines having slope 2 which are tangents to the curve $y=\frac{1}{x-3}, x \neq 3$.
Solution:
Equation of the curve $y=\frac{1}{x-3}=(x-3)^{-1}$

$$
\begin{aligned}
& \frac{d y}{d x}=(-1)(x-3)^{-2} \\
& =\frac{-1}{(x-3)^{2}}
\end{aligned}
$$

$=$ Slope of the tangent at (x, y)
But according to question, slope $=2$

$$
\begin{aligned}
& \frac{-1}{(x-3)^{2}}=2 \\
& (x-3)^{2}=\frac{-1}{2}
\end{aligned}
$$

which is not possible.
Hence, there is no tangent to the given curve having slope 2.
12. Find the equations of all lines having slope 0 which are tangents to the curve $y=\frac{1}{x^{2}-2 x+3}$.

Solution:

Equation of the curve $y=\frac{1}{x^{2}-2 x+3}$

$$
\begin{align*}
& \frac{d y}{d x}=\frac{d}{d x}\left[\left(x^{2}-2 x+3\right)^{-1}\right] \tag{1}\\
& =-\left(x^{2}-2 x+3\right)^{-2} \cdot(2 x-2) \\
& =\frac{-2(x-1)}{\left(x^{2}-2 x+3\right)^{2}}
\end{align*}
$$

But according to question, slope $=0$, so

$$
\begin{aligned}
& \frac{-2(x-1)}{\left(x^{2}-2 x+3\right)^{2}}=0 \\
& -2(x-1)=0 \\
& x=1
\end{aligned}
$$

From equation (1), $y=\frac{1}{1-2+3}=\frac{1}{2}$
Therefore, the point on the curve which tangent has slope 0 is $\left(1, \frac{1}{2}\right)$.
Equation of the tangent is $y-\frac{1}{2}=0(x-1)$
$y-\frac{1}{2}=0$

Which implies, the value of y is $1 / 2$.
13. Find the points on the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ at which the tangents are:
(i) parallel to x -axis
(ii) parallel to \mathbf{y}-axis

Solution:
Equation of the curve $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$
Derivate y w.r.t. x, we have

$$
\begin{align*}
& \frac{2 x}{9}+\frac{2 y}{16} \frac{d y}{d x}=0 \\
& \frac{2 y}{16} \frac{d y}{d x}=-\frac{2 x}{9} \\
& \frac{d y}{d x}=\frac{-32 x}{18 y}=\frac{-16 x}{9 y} \tag{2}
\end{align*}
$$

(i) If tangent is parallel to x-axis, then Slope of tangent $=0$

Which implies, $\frac{d y}{d x}=0$

$$
\begin{aligned}
& \frac{-16 x}{9 y}=0 \\
& x=0
\end{aligned}
$$

From equation (1), $\frac{y^{2}}{16}=1$
$y^{2}=16$
$y= \pm 4$

The points on curve
(1) where tangents are parallel to x-axis are $(0, \pm 4)$.
(ii) If the tangent parallel to y-axis.

Slope of the tangent $= \pm \infty$
$\frac{d y}{d x}= \pm \infty$
$\frac{d x}{d y}=0 \quad$ (taking reciprocal)
From equation (2), $\frac{9 y}{-16 x}=0$
$y=0$

From equation (1), $\frac{x^{2}}{9}=1$
$x^{2}=9$
$x= \pm 3$

Therefore, the points on curve (1) where tangents are parallel to y-axis are $(\pm 3,0)$.
14. Find the equation of the tangents and normal to the given curves at the indicated points:
(i) $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(0,5)$
(ii) $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$ at $(1,3)$
(iii) $y=x^{3}$ at $(1,1)$
(iv) $y=x^{2}$ at $(0,0)$
(v) $x=\cos t, y=\sin t$ at $t=\pi / 4$

Solution:

(i) Equation of the curve $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$

On differentiating y w.r.t. x, we have

$$
\frac{d y}{d x}=4 x^{3}-18 x^{2}+26 x-10
$$

Now, value of $\frac{d y}{d x}$ at $(0,5)$
At $x=0$,
$4(0)^{3}-18(0)^{2}+26(0)-10=-10=m$ (say)
Slope of the normal at $(0,5)$ is $\frac{-1}{m}=\frac{-1}{-10}=\frac{1}{10}$
Equation of the tangent at $(0,5)$ is $y-5=10(x-0)$
$y-5=10 x$
$10 x+y=5$
And Equation of the normal at $(0,5)$ is $y-5=\frac{1}{10}(x-0)$

$$
\begin{aligned}
& 10 y-50=x \\
& x-10 y+50=0
\end{aligned}
$$

(ii) Equation of the curve $y=x^{4}-6 x^{3}+13 x^{2}-10 x+5$

On differentiating y w.r.t. x , we have

$$
\frac{d y}{d x}=4 x^{3}-18 x^{2}+26 x-10
$$

Now value of $\frac{d y}{d x}$ at $(1,3)$
At $x=1$,
$4(1)^{3}-18(1)^{2}+26(1)-10=4-18+26-10=2=m$ (say)

Slope of the normal at $(1,3)$ is $\frac{-1}{m}=\frac{-1}{2}$
Equation of the tangent at $(1,3)$ is $y-3=2(x-1)$
$y-3=2 x-2$
$y=2 x+1$
And Equation of the normal at $(1,3)$ is $y-3=\frac{-1}{2}(x-1)$
$2 y-6=-x+1$
$x+2 y-7=0$
(iii) Equation of the curve $y=x^{3}$

On differentiating y w.r.t. x , we have

$$
\frac{d y}{d x}=3 x^{2}
$$

Now, value of $\frac{d y}{d x}$ at $(1,1)$
At $x=1$,
$3(1)^{2}=3=m$ (say)
Slope of the normal at $(1,1)$ is $\frac{-1}{m}=\frac{-1}{3}$
Equation of the tangent at $(1,1)$ is ${ }^{y-1=3(x-1)}$

$$
y-1=3 x-3 \text { or } y=3 x-2
$$

And Equation of the normal at $(1,1)$ is $y-1=\frac{-1}{3}(x-1)$
$3 y-3=-x+1$

$$
x+3 y-4=0
$$

(iv) Equation of the curve $y=x^{2}$

On differentiating y w.r.t. x, we have

$$
\frac{d y}{d x}=2 x
$$

Now value of $\frac{d y}{d x}$ at $(0,0)$
At $x=0,2 \times 0=0=m$ (say)
Equation of the tangent at $(0,0)$ is $y-0=0(x-0)$
$y=0$
And normal at $(0,0)$ is y-axis.
(v) Equation of the curves are $x=\cos t, y=\sin t$
$\therefore \frac{d x}{d t}=-\sin t$ and $\frac{d y}{d t}=\cos t$
$\therefore \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{\cos t}{-\sin t}=-\cot t$
Slope of the tangent at $t=\frac{\pi}{4}=-\cot \frac{\pi}{4}=-1=m$ (say)
Slope of the normal at $t=\frac{\pi}{4}$ is $\frac{-1}{m}=\frac{-1}{-1}=1$
Point ${ }^{(x, y)}=(\cos t, \sin t)$
$=\left(\cos \frac{\pi}{4}, \sin \frac{\pi}{4}\right)$
$=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
Equation of the tangent is $y-\frac{1}{\sqrt{2}}=-1\left(x-\frac{1}{\sqrt{2}}\right)$

$$
\begin{aligned}
& x+y=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \\
& x+y=\sqrt{2}
\end{aligned}
$$

And Equation of the normal is $y-\frac{1}{\sqrt{2}}=1\left(x-\frac{1}{\sqrt{2}}\right)$

$$
\begin{aligned}
& y-\frac{1}{\sqrt{2}}=x-\frac{1}{\sqrt{2}} \\
& \Rightarrow>^{y}=x
\end{aligned}
$$

15. Find the equation of the tangent line to curve ${ }^{y=x^{2}-2 x+7}$ which is:
(a) parallel to the line $2 x-y+9=0$
(b) perpendicular to the line $5 y-15 x=13$

Solution:

Equation of the curve $y=x^{2}-2 x+7$
Slope of tangent $=\frac{d y}{d x}=2 x-2$
(a) Slope of the line $2 x-y+9=0$ is $\frac{-a}{b}=\frac{-2}{-1}=2$

Slope of tangent parallel to this line is also $=2$
From equation (2), $2 x-2=2$
$\Rightarrow x=2$
From equation (1), $y=4-4+7=7$
Therefore, point of contact is $(2,7)$.

Equation of the tangent at $(2,7)$ is $y-7=2(x-2)$
$\Rightarrow y-7=2 x-4$
$\Rightarrow y-2 x-3=0$
(b) Slope of the line $-15 x+5 y=13$ is $\frac{-a}{b}=\frac{-(-15)}{5}=3=m$

Slope of the required tangent perpendicular to this line $=\frac{-1}{m}=\frac{-1}{3}$
From equation (2), $2 x-2=\frac{-1}{3}$

$$
\begin{aligned}
& 6 x-6=-1 \\
& x=\frac{5}{6}
\end{aligned}
$$

From equation (1), $y=\frac{25}{36}-\frac{5}{3}+7$

$$
=\frac{\frac{25-60+252}{36}=\frac{217}{36}}{36}
$$

Therefore, point of contact is

$$
\left(\frac{5}{6}, \frac{217}{36}\right)
$$

Equation of the required tangent is $y-\frac{217}{36}=\frac{-1}{3}\left(x-\frac{5}{6}\right)$

$$
\begin{aligned}
& 3 y-\frac{217}{12}=-x+\frac{5}{6} \\
& x+3 y=\frac{217}{12}+\frac{5}{6} \\
& x+3 y=\frac{217+10}{12}=\frac{227}{12}
\end{aligned}
$$

$12 x+36 y=227$. (Which is required equation)
16. Show that the tangents to the curve $y=7 x^{3}+11$ at the points where $x=2$ and $x=-2$ are parallel.
Solution:
Equation of the curve $y=7 x^{3}+11$
Slope of tangent at $(x, y)=\frac{d y}{d x}=21 x^{2}$
At the point $x=2$,
Slope of the tangent $=21(2)^{2}=21 \times 4=84$
At the point $x=-2$,
Slope of the tangent $=21(-2)^{2}=21 \times 4=84$
Since, the slopes of the two tangents are equal.
Therefore, tangents at $x=2$ and $x=-2$ are parallel.
17. Find the points on the curve $y^{3}=x^{3}$ at which the slope of the tangent is equal to the ${ }^{y-}$ coordinate of the point.
Solution:
Equation of the curve $y=x^{3}$
Slope of tangent at (x, y)
$=\frac{d y}{d x}=3 x^{2}$.
As given, Slope of the tangent $=y$-coordinate of the point

$$
\begin{aligned}
& 3 x^{2}=x^{3} \\
& 3 x^{2}-x^{3}=0 \\
& x^{2}(3-x)=0
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}=0 \text { or } 3-x=0 \\
& x=0 \text { or } x=3
\end{aligned}
$$

From equation (1), at $x=0, y=0$
The point is $(0,0)$.
And From equation (1), at $x=3, y=27$
The point is $(3,27)$.
Therefore, the desired points are $(0,0)$ and $(3,27)$.
18. For the curve $y=4 x^{3}-2 x^{5}$, find all point at which the tangent passes through the origin.
Solution:
Equation of the curve $y=4 x^{3}-2 x^{5}$
Slope of the tangent at (x, y) passing through origin $(0,0)$

$$
\frac{d y}{d x}=12 x^{2}-10 x^{4}
$$

And dy/dx $=\frac{y-0}{x-0}$

$$
\begin{aligned}
& \frac{y}{x}=12 x^{2}-10 x^{4} \\
y & =12 x^{3}-10 x^{5}
\end{aligned}
$$

Substituting value of y in equation (1), we get,

$$
\begin{aligned}
& 12 x^{3}-10 x^{5}=4 x^{3}-2 x^{5} \\
& 8 x^{3}-8 x^{5}=0 \\
& 8 x^{3}\left(1-x^{2}\right)=0 \\
& 8 x^{3}=0 \text { or } 1-x^{2}=0 \\
& \Rightarrow x=0 \text { or } x= \pm 1
\end{aligned}
$$

From equation (1),
at $x=0$, the value of $y=0$.
From equation (1), at $x=1$,
The value of y is, $y=4-2=2$
From equation (1), at $x=-1$,
The value of y is $y=-4+2=-2$
Therefore, the required points are $(0,0),(1,2)$ and $(-1,-2)$.
19. Find the points on the curve $x^{2}+y^{2}-2 x-3=0$ at which the tangents are parallel to \mathbf{x} axis.
Solution:
Equation of the curve $x^{2}+y^{2}-2 x-3=0$
On differentiating expression w.r.t. x , we have

$$
\begin{aligned}
& 2 x+2 y \frac{d y}{d x}-2=0 \\
& 2 y \frac{d y}{d x}=2-2 x \\
& \frac{d y}{d x}=\frac{2(1-x)}{2 y}=\frac{1-x}{y}
\end{aligned}
$$

Since tangent is parallel to x-axis: $\frac{d y}{d x}=0$

$$
\begin{aligned}
& \frac{1-x}{y}=0 \\
& \Rightarrow \quad x=1
\end{aligned}
$$

From equation (1), $1+y^{2}-2-3=0$
$\Rightarrow y^{2}=4$
$\Rightarrow y= \pm 2$
Therefore, the required points are $(1,2)$ and $(1,-2)$.
20. Find the equation of the normal at the point $\left(a m^{2}, a m^{3}\right)$ for the curve $a y^{2}=x^{3}$.

Solution:
Equation of the curve $a y^{2}=x^{3}$ \qquad
On differentiating expression w.r.t. x, we have

$$
\begin{aligned}
& a \frac{d}{d x} y^{2}=\frac{d}{d x} x^{3} \\
& a .2 y \frac{d y}{d x}=3 x^{2} \\
& \frac{d y}{d x}=\frac{3 x^{2}}{2 a y}
\end{aligned}
$$

Slope of the tangent at the point $\left(\mathrm{am}^{2}, \mathrm{am}^{3}\right)$
$=\frac{3\left(\mathrm{am}^{2}\right)^{2}}{2 a \cdot a m^{3}}=\frac{3 \mathrm{~m}}{2}$
Slope of the normal at the point $\left(\mathrm{am}^{2}, \mathrm{am}^{3}\right)=\frac{-2}{3 m}$
Equation of the normal at $\left(\mathrm{am}^{2}, \mathrm{am}^{3}\right)$ is

$$
\begin{aligned}
& y-a m^{3}=\frac{-2}{3 m}\left(x-a m^{2}\right) \\
\Rightarrow & 3 m y-3 a m^{4}=-2 x+2 a m^{2} \\
\Rightarrow & 2 x+3 m y-2 a m^{2}-3 a m^{4}=0 \\
\Rightarrow & 2 x+3 m y-a m^{2}\left(2+3 m^{2}\right)=0
\end{aligned}
$$

21. Find the equations of the normal to the curve $y=x^{3}+2 x+6$ which are parallel to the line $x+14 y+4=0$.

Solution:

Equation of the curve $y=x^{3}+2 x+6$
Slope of the tangent at (x, y)
So, $\frac{d y}{d x}=3 x^{2}+2$
Slope of the normal to the curve at (x, y)

$$
\begin{equation*}
=\frac{-1}{3 x^{2}+2} . \tag{2}
\end{equation*}
$$

Since Slope of the normal $=\frac{-1}{14}$ (Given)

$$
\begin{aligned}
& \frac{-1}{3 x^{2}+2}=\frac{-1}{14} \\
& \Rightarrow 3 x^{2}+2=14 \\
& 3 x^{2}=12 \\
& x^{2}=4 \\
& x= \pm 2
\end{aligned}
$$

From equation (1), at $x=2, y=8+4+6=18$
at $x=-2, y=-8-4+6=-6$
Therefore, the points of contact are $(2,18)$ and $(-2,-6)$.
Equation of the normal at $(2,18)$ is $y-18=\frac{-1}{14}(x-2)$
$\Rightarrow 14 y-252=-x+2$

$$
x+14 y-254=0
$$

And Equation of the normal at $(-2,-6)$ is $y+6=\frac{-1}{14}(x+2)$
$14 y+84=-x-2$
$x+14 y+86=0$
Which is required equation.
22. Find the equation of the tangent and normal to the parabola $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$.
Solution:
Equation of the parabola $y^{2}=4 a x$
Slope of the tangent at (x, y)
$=\frac{d y}{d x} y^{2}=4 a \frac{d}{d x}(x)$
$\Rightarrow 2 y \frac{d y}{d x}=4 a$
$\Rightarrow \frac{d y}{d x}=\frac{4 a}{2 y}=\frac{2 a}{y}$
Slope of the tangent at the point $\left(a t^{2}, 2 a t\right)=\frac{2 a}{2 a t}=\frac{1}{t}$
Slope of the normal $=-t$
Equation of the tangent at the point $\left(a t^{2}, 2 a t\right)$

$$
\begin{aligned}
& =y-2 a t=\frac{1}{t}\left(x-a t^{2}\right) \\
& t y-2 a t^{2}=x-a t^{2}
\end{aligned}
$$

$$
t y=x+a t^{2}
$$

And Equation of the normal at the point $\left(a t^{2}, 2 a t\right)$
$=y-2 a t=-t\left(x-a t^{2}\right)$
Which implies, $\quad x+y=2 a t+a t^{3}$
23. Prove that the curves $x=y^{2}$ and $x y=k$ cut at right angles if $8 k^{2}=1$.

Solution: Equations of the curves are $x=y^{2}$.....(1) and
$x y=k$.
Substituting the value of x in equation (2), we get $y^{2} \cdot y=k$
$y=k^{1 / 3}$
Put the value of y in equation (1), we get

$$
x=\left(k^{1 / 3}\right)^{2}=k^{2 / 3}
$$

Therefore, the point of intersection (x, y) is

Differentiating equation (1) w.r.t x
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 y}=m_{1}$
Differentiating equation (2) w.r.t
$\Rightarrow \frac{d y}{d x}=\frac{-y}{x}=m_{2}$.
According to the question, $m_{1} m_{2}=-1$
Which implies,
$\frac{1}{2 y}\left(\frac{-y}{x}\right)=-1$
$\frac{1}{2 x}=1$
$2 x=1$
$2 k^{1 / 3}=1$ [using equation (3)]
Taking cube both the sides,

$$
8 k^{2}=1
$$

Hence Proved.
24. Find the equation of the tangent and normal to the hyperbola $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at the point $\left(x_{0}, y_{0}\right)$.

Solution:
Equation of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
On differentiating w.r.t. x , we get
$\frac{2 x}{a^{2}}-\frac{2 y}{b^{2}} \cdot \frac{d y}{d x}=0$
$\frac{-2 y}{b^{2}} \cdot \frac{d y}{d x}=\frac{-2 x}{a^{2}}$
$\frac{d y}{d x}=\frac{b^{2} x}{a^{2} y}$
Slope of tangent at $\left(x_{0}, y_{0}\right)$ is $\frac{b^{2} x_{0}}{a^{2} y_{0}}$
Equation of the tangent at $\left(x_{0}, y_{0}\right)$ is $y-y_{0}=\frac{b^{2} x_{0}}{a^{2} y_{0}}\left(x-x_{0}\right)$

$$
\begin{align*}
& y y_{0}-y_{0}^{2}=\frac{b^{2}}{a^{2}}\left(x x_{0}-x_{0}^{2}\right) \\
& \frac{y y_{0}}{b^{2}}-\frac{y_{0}^{2}}{b^{2}}=\frac{x x_{0}}{a^{2}}-\frac{x_{0}^{2}}{a^{2}} \\
& \frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}}=\frac{x_{0}^{2}}{a^{2}}-\frac{y_{0}^{2}}{b^{2}} \ldots . \tag{3}
\end{align*}
$$

Since $\left(x_{0}, y_{0}\right)$ lies on the hyperbola (1), therefore, $\frac{x_{0}^{2}}{a^{2}}-\frac{y_{0}^{2}}{b^{2}}=1$
From equation (3), $\frac{x x_{0}}{a^{2}}-\frac{y y_{0}}{b^{2}}=1$
Now, Slope of normal at $\left(x_{0}, y_{0}\right)=\frac{-a^{2} y_{0}}{b^{2} x_{0}}$
Therefore,

Equation of the normal at $\left(x_{0}, y_{0}\right)$ is

$$
y-y_{0}=\frac{-a^{2} x_{0}}{b^{2} y_{0}}\left(x-x_{0}\right)
$$

$$
\begin{aligned}
& b^{2} x_{0} y-b^{2} x_{0} y_{0}=-a^{2} y_{0} x+a^{2} x_{0} y_{0} \\
& b^{2} x_{0}\left(y-y_{0}\right)=-a^{2} y_{0}\left(x-x_{0}\right)
\end{aligned}
$$

On dividing both sides by $a^{2} b^{2} x_{0} y_{0}$, we get
$\frac{y-y_{0}}{a^{2} y_{0}}=-\frac{\left(x-x_{0}\right)}{b^{2} x_{0}}$
$\frac{\left(x-x_{0}\right)}{b^{2} x_{0}}+\frac{y-y_{0}}{a^{2} y_{0}}=0$
Which is required equation.
25. Find the equation of the tangent to the curve $y=\sqrt{3 x-2}$ which is parallel to the line $4 x-2 y+5=0$.

Solution:
Equation of the curve $y=\sqrt{3 x-2}$
Slope of the tangent at point (x, y) is $\frac{d y}{d x}=\frac{d}{d x}(3 x-2)^{\frac{1}{2}}$

$$
\begin{align*}
& \frac{d y}{d x}=\frac{1}{2}(3 x-2)^{-\frac{1}{2}} \frac{d}{d x}(3 x-2) \\
& =\frac{1}{2 \sqrt{3 x-2}} \cdot 3 \tag{2}
\end{align*}
$$

Again slope of the line $4 x-2 y+5=0$ is $\frac{-a}{b}=\frac{-4}{-2}=2$
As given: Parallel lines have same slope.
By equation slopes of both the lines, we get

$$
\begin{aligned}
& \frac{1}{2 \sqrt{3 x-2}} \cdot 3=2 \\
& 4 \sqrt{3 x-2}=3 \\
& 16(3 x-2)=9 \\
& 48 x-32=9 \\
& 48 x=41 \\
& x=\frac{41}{48}
\end{aligned}
$$

Substitute the value of x in equation (1),

$$
y=\sqrt{3\left(\frac{41}{48}\right)-2}
$$

$=\sqrt{\frac{41}{16}-2}$
$=\sqrt{\frac{41-32}{16}}=\sqrt{\frac{9}{16}}=\frac{3}{4}$
Therefore, point of contact is $\left(\frac{41}{48} ; \frac{3}{4}\right)$.
Now,
Equation of the required tangent is $y-\frac{3}{4}=2\left(x-\frac{41}{48}\right)$
$y-\frac{3}{4}=2 x-\frac{41}{24}$
$y=2 x+\frac{18-41}{24}$
$24 y=48 x-23$
$48 x-24 y=23$
Which is required equation.
Choose the correct answer in Exercises 26 and 27.
26. The slope of the normal to the curve $y=2 x^{2}+3 \sin x$ at $x=0$ is:
(A) 3
(B) $1 / 3$
(C) -3
(D) $-1 / 3$

Solution:
Option (D) is correct.

Explanation:

Equation of the curve $y=2 x^{2}+3 \sin x$ \qquad
Slope of the tangent at point (x, y) is $\frac{d y}{d x}=4 x+3 \cos x$

Slope of the tangent at $x=0,4(0)+3 \cos 0=3=m$ (say)
Slope of the normal $=\frac{-1}{m}=\frac{-1}{3}$
27. The line $y=x+1$ is a tangent to the curve $y^{2}=4 x$ at the point:
(A) $(1,2)$
(B) $(2,1)$
(C) $(1,-2)$
(D) $(-1,2)$

Solution:

Option (A) is correct.

Explanation:

Equation of the curve $y^{2}=4 x$
Slope of the tangent at point (x, y) is $2 \frac{d y}{d x}=4$

$$
\begin{equation*}
\frac{d y}{d x}=\frac{2}{y} \tag{2}
\end{equation*}
$$

Now,
Slope of the line $y=x+1$ is $1 \ldots .$. (3)
[as we know, $\frac{-a}{b}=\frac{-1}{-1}=1$]
From equation (2) and (3),

$$
\frac{2}{y}=1
$$

$y=2$
From equation (1), $4=4 x$
$x=1$
Therefore, required point is (1, 2).

