

Exercise 1.2

Page No: 10

1. Show that the function $f : R_* \rightarrow R_*$ defined by f(x) = 1/x is one-one and onto, where R_* is the set of all non-zero real numbers. Is the result true, if the domain R_* is replaced by N with co-domain being same as R_* ?

Solution:

Given: $f : R_* \rightarrow R_*$ defined by f(x) = 1/x

Check for One-One

$$f(x_1) = \frac{1}{x_1} \text{ and } f(x_2) = \frac{1}{x_2}$$

If $f(x_1) = f(x_2)$ then $\frac{1}{x_1} = \frac{1}{x_2}$

This implies $x_1 = x_2$

Therefore, f is one-one function.

Check for onto

f(x) = 1/xor y = 1/x or x = 1/y f(1/y) = y Therefore, f is onto function.

Again, If $f(x_1) = f(x_2)$

Say, $n_1, n_2 \in R$

 $\frac{1}{n_1} = \frac{1}{n_2}$

So $n_1 = n_2$ Therefore, f is one-one

Every real number belonging to co-domain may not have a pre-image in N. for example, 1/3 and 3/2 are not belongs N. So N is not onto.

2. Check the injectivity and surjectivity of the following functions:

(i) f : N \rightarrow N given by f(x) = x²

(ii) f : Z \rightarrow Z given by f(x) = x²

(iii) f : R \rightarrow R given by f(x) = x²

(iv) $f : N \rightarrow N$ given by $f(x) = x^3$

(v) f : Z \rightarrow Z given by f(x) = x³

Solution:

(i) $f: N \to N$ given by $f(x) = x^2$

For x, $y \in N \Rightarrow f(x) = f(y)$ which implies $x^2 = y^2$ $\Rightarrow x = y$ Therefore f is injective.

There are such numbers of co-domain which have no image in domain N.

Say, $3 \in N$, but there is no pre-image in domain of f. such that $f(x) = x^2 = 3$.

f is not surjective.

Therefore, f is injective but not surjective.

(ii) Given, $f : Z \rightarrow Z$ given by $f(x) = x^2$

Here, $Z = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \dots\}$

f(-1) = f(1) = 1

But -1 not equal to 1.

f is not injective.

There are many numbers of co-domain which have no image in domain Z.

For example, $-3 \in$ co-domain Z, but $-3 \notin$ domain Z f is not surjective.

Therefore, f is neither injective nor surjective.

(iii) $f : R \rightarrow R$ given by $f(x) = x^2$

f(-1) = f(1) = 1

But -1 not equal to 1.

f is not injective.

There are many numbers of co-domain which have no image in domain R.

For example, $-3 \in$ co-domain R, but there does not exist any x in domain R where $x^2 = -3$ f is not surjective.

Therefore, f is neither injective nor surjective.

(iv) $f : N \rightarrow N$ given by $f(x) = x^3$

For x, $y \in N \Rightarrow f(x) = f(y)$ which implies $x^3 = y^3$ $\Rightarrow x = y$ Therefore f is injective.

There are many numbers of co-domain which have no image in domain N.

For example, $4 \in \text{co-domain N}$, but there does not exist any x in domain N where $x^3 = 4$. f is not surjective.

Therefore, f is injective but not surjective.

(v) f : Z \rightarrow Z given by f(x) = x³

For x, $y \in Z \Rightarrow f(x) = f(y)$ which implies $x^3 = y^3$ $\Rightarrow x = y$ Therefore f is injective.

There are many numbers of co-domain which have no image in domain Z.

For example, $4 \in \text{co-domain N}$, but there does not exist any x in domain Z where $x^3 = 4$. f is not surjective.

Therefore, f is injective but not surjective.

3. Prove that the Greatest Integer Function $f : R \rightarrow R$, given by f(x) = [x], is neither oneone nor onto, where [x] denotes the greatest integer less than or equal to x.

Solution:

Function f : R \rightarrow R, given by f(x) = [x] f(x) = 1, because $1 \le x \le 2$

f(1.2) = [1.2] = 1f(1.9) = [1.9] = 1 But 1.2 \neq 1.9

f is not one-one.

There is no fraction proper or improper belonging to co-domain of f has any pre-image in its domain.

For example, f(x) = [x] is always an integer

for 0.7 belongs to R there does not exist any x in domain R where f(x) = 0.7 f is not onto.

Hence proved, the Greatest Integer Function is neither one-one nor onto.

4. Show that the Modulus Function $f : \mathbb{R} \to \mathbb{R}$, given by f(x) = |x|, is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x| is -x, if x is negative.

Solution:

f : R \rightarrow R, given by f(x) = | x |, defined as

 $f(x) = |x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x, & \text{if } x < 0 \end{cases}$

f contains values like (-1, 1),(1, 1),(-2, 2)(2,2)

f(-1) = f(1), but -1 1

f is not one-one.

R contains some negative numbers which are not images of any real number since f(x) = |x| is always non-negative. So f is not onto.

Hence, Modulus Function is neither one-one nor onto.

5. Show that the Signum Function $f: R \rightarrow R,$ given by

$$f(x) = \begin{cases} 1, \text{ if } x > 0\\ 0, \text{ if } x = 0\\ 1, \text{ if } x < 0 \end{cases}$$

is neither one-one nor onto.

Solution: Signum Function $f : R \rightarrow R$, given by

 $f(x) = \begin{cases} 1, \text{ if } x > 0\\ 0, \text{ if } x = 0\\ 1, \text{ if } x < 0 \end{cases}$

f(1) = f(2) = 1

This implies, for n > 0, $f(x_1) = f(x_2) = 1$

$$\mathbf{X}_1 \neq \mathbf{X}_2$$

f is not one-one.

f(x) has only 3 values, (-1, 0 1). Other than these 3 values of co-domain R has no any preimage its domain.

f is not onto.

Hence, Signum Function is neither one-one nor onto.

6. Let A = $\{1, 2, 3\}$, B = $\{4, 5, 6, 7\}$ and let f = $\{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Show that f is one-one.

Solution:

 $A = \{1, 2, 3\}$ B = {4, 5, 6, 7} and f = {(1, 4), (2, 5), (3, 6)}

f(1) = 4, f(2) = 5 and f(3) = 6

Here, also distinct elements of A have distinct images in B.

Therefore, f is one-one.

7. In each of the following cases, state whether the function is one-one, onto or bijective. Justify your answer. (i) $f : R \rightarrow R$ defined by f(x) = 3 - 4x(ii) $f : R \rightarrow R$ defined by $f(x) = 1 + x^2$

Solution:

(i) f : R \rightarrow R defined by f(x) = 3 – 4x If x₁, x₂ \in R then

 $f(x_1) = 3 - 4x_1$ and $f(x_2) = 3 - 4x_2$

If $f(x_1) = f(x_2)$ then $x_1 = x_2$

Therefore, f is one-one.

Again, f(x) = 3 - 4xor y = 3 - 4xor x = (3-y)/4 in R

```
f((3-y)/4) = 3 - 4((3-y)/4) = y
```

f is onto.

Hence f is onto or bijective.

(ii) f : R \rightarrow R defined by f(x) = 1 + x²

If $x_1, x_2 \in R$ then

 $f(x_1) = 1 + x_1^2$ and $f(x_2) = 1 + x_2^2$

If $f(x_1) = f(x_2)$ then $x_1^2 = x_2^2$

This implies $x_1 \neq x_2$

Therefore, f is not one-one

Again, if every element of co-domain is image of some element of Domain under f, such that f(x) = y

 $f(x) = 1 + x^2$

 $y = f(x) = 1 + x^2$

or $x = \pm \sqrt{1 - y}$

Therefore, $f(\sqrt{1-y}) = 2 - y \neq y$

Therefore, f is not onto or bijective.

8. Let A and B be sets. Show that $f:A\times B\to B\times A$ such that f(a,b) = (b, a) is bijective function.

Solution:

Step 1: Check for Injectivity:

Let (a_1, b_1) and $(a_2, b_2) \in A \times B$ such that

 $f(a_1, b_1) = (a_2, b_2)$

This implies, (b_1, a_1) and (b_2, a_2)

 $b_1 = b_2$ and $a_1 = a_2$

 $(a_1, b_1) = (a_2, b_2)$ for all (a_1, b_1) and $(a_2, b_2) \in A \times B$

Therefore, f is injective.

Step 2: Check for Surjectivity:

Let (b, a) be any element of B x A. Then $a \in A$ and $b \in B$

This implies $(a, b) \in A \times B$

For all $(b, a) \in B \times A$, their exists $(a, b) \in A \times B$

Therefore, f: $A \times B \rightarrow B \times A$ is bijective function.

9. Let $f:N \rightarrow N$ be defined by

$$f(n) = \begin{cases} \frac{n+1}{2}, \text{ if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases} \text{ for all } n \in \mathbb{N}$$

State whether the function f is bijective. Justify your answer

Solution:

$$f(n) = \begin{cases} \frac{n+1}{2}, \text{ if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases} \text{ for all } n \in \mathbb{N}$$

For n = 1, 2

$$f(1) = (n+1)/2 = (1+1)/2 = 1$$
 and

$$f(2) = (n)/2 = (2)/2 = 1$$

f(1) = f(2), but $1 \neq 2$

f is not one-one.

For a natural number, "a" in co-domain N

lf n is odd

n=2k+1 for $k\in N$, then $4k+1\ \in N$ such that

f(4k+1) = (4k+1+1)/2 = 2k + 1

If n is even

n= 2k for some $k \in N$ such that f(4k) = 4k/2 = 2k f is onto

Therefore, f is onto but not bijective function.

10. Let A = R – {3} and B = R – {1}. Consider the function f : A \rightarrow B defined by f(x) = (x-2)/(x-3) Is f one-one and onto? Justify your answer.

Solution: $A = R - \{3\}$ and $B = R - \{1\}$

f : A \rightarrow B defined by f(x) = (x-2)/(x-3)

Let $(x, y) \in A$ then

$$f(x) = \frac{x-2}{x-3}$$
 and $f(y) = \frac{y-2}{y-3}$

For f(x) = f(y)

$$\frac{x-2}{x-3} = \frac{y-2}{y-3}$$

$$(x-2)(y-3) = (y-2)(x-3)$$

$$xy-3x-2y+6 = xy-3y-2x+6$$

$$-3x-2y = -3y-2x$$

$$-3x+2x = -3y+2y$$

$$-x = -y$$

$$x = y$$

Again, f(x) = (x-2)/(x-3)or y = f(x) = (x-2)/(x-3)y = (x-2)/(x-3)y(x-3) = x - 2xy - 3y = x - 2x(y - 1) = 3y - 2

or x = (3y-2)/(y-1)

Now, f((3y-2)/(y-1)) =
$$\frac{\frac{3y-2}{y-1}-2}{\frac{3y-2}{y-1}-3} = y$$

$$f(x) = y$$

Therefore, f is onto function.

11. Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x^4$. Choose the correct answer. (A) f is one-one onto (B) f is many-one onto (C) f is one-one but not onto (D) f is poither one-one per onto

(C) f is one-one but not onto (D) f is neither one-one nor onto.

Solution:

f : R \rightarrow R be defined as f(x) = x⁴

let x and y belongs to R such that, f(x) = f(y)

 $x^4 = y^4$ or $x = \pm y$

f is not one-one function.

Now, $y = f(x) = x^4$ Or $x = \pm y^{1/4}$

 $f(y^{1/4}) = y$ and $f(-y^{1/4}) = -y$

Therefore, f is not onto function.

Option D is correct.

12. Let $f : R \to R$ be defined as f(x) = 3x. Choose the correct answer. (A) f is one-one onto (B) f is many-one onto (C) f is one-one but not onto (D) f is neither one-one nor onto.

Solution: $f : R \rightarrow R$ be defined as f(x) = 3x

let x and y belongs to R such that f(x) = f(y)

3x = 3y or x = y

f is one-one function.

Now, y = f(x) = 3x

Or x = y/3

f(x) = f(y/3) = y

Therefore, f is onto function.

Option (A) is correct.