

Exercise 2.1

Page No: 41

Find the principal values of the following:

1.
$$\sin^{-1}\left(-\frac{1}{2}\right)$$

$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

4.
$$tan^{-1}(-\sqrt{3})$$

$$\cos^{-1}\left(\frac{-1}{2}\right)$$

$$\sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

$$\cot^{-1}(\sqrt{3})$$

$$\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$$

10.
$$\cos ec^{-1}(-\sqrt{2})$$

Solution 1: Consider $y = \sin^{-1}\left(-\frac{1}{2}\right)$

Solve the above equation, we have

$$\sin y = -1/2$$

We know that $\sin \pi/6 = \frac{1}{2}$

So,
$$\sin y = -\sin \pi/6$$

$$\sin y = \sin \left(-\frac{\pi}{6} \right)$$

Since range of principle value of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Principle value of $\sin^{-1}\left(-\frac{1}{2}\right)$ is $-\pi/6$.

Solution 2:

Let
$$y = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

Cos y = $\cos \pi/6$ (as $\cos \pi/6 = \sqrt{3} / 2$)

$$y = \pi/6$$

Since range of principle value of \cos^{-1} is $[0, \pi]$

Therefore, Principle value of $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$ is $\pi/6$

Solution 3: Cosec -1 (2)

Let
$$y = Cosec^{-1}(2)$$

Cosec
$$y = 2$$

We know that, cosec π /6 = 2

So Cosec y = cosec π /6

Since range of principle value of cosec⁻¹ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Therefore, Principle value of Cosec $^{-1}$ (2) is $\Pi/6$.

Solution 4: $\tan^{-1}\left(-\sqrt{3}\right)$

Let
$$y = \tan^{-1}\left(-\sqrt{3}\right)$$

 $\tan y = - \tan \pi/3$

or tan
$$y = \tan(-\pi/3)$$

Since range of principle value of \tan^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Therefore, Principle value of $\tan^{-1}(-\sqrt{3})$ is $-\pi/3$.

Solution 5: $\cos^{-1}\left(\frac{-1}{2}\right)$

$$y = \cos^{-1}\left(\frac{-1}{2}\right)$$

$$\cos y = -1/2$$

$$\cos y = -\cos\frac{\pi}{3}$$

$$\cos y = \cos(\pi - \pi/3) = \cos(2\pi/3)$$

Since principle value of cos^{-1} is $[0, \pi]$

Therefore, Principle value of $\cos^{-1}\left(\frac{-1}{2}\right)$ is $2\pi/3$

Solution 6: tan⁻¹(-1)

Let
$$y = tan^{-1}(-1)$$

$$tan(y) = -1$$

$$tan y = -tan \pi/4$$

$$\tan y = \tan \left(-\frac{\pi}{4} \right)$$

Since principle value of tan-1 is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Therefore, Principle value of $tan^{-1}(-1)$ is $-\pi/4$.

Solution 7:

$$y = \sec^{-1}\left(\frac{2}{\sqrt{3}}\right)$$

$$\sec y = 2/\sqrt{3}$$

$$\sec y = \sec \frac{\pi}{6}$$

Since principle value of sec⁻¹ is $[0, \pi]$

Therefore, Principle value of

Solution 8: $\cot^{-1}(\sqrt{3})$

$$y = \cot^{-1}(\sqrt{3})$$

$$\cot y = \sqrt{3}$$

$$\cot y = \pi/6$$

Since principle value of \cot^{-1} is $[0, \pi]$

Therefore, Principle value of $\cot^{-1}(\sqrt{3})$ is $\pi/6$.

Solution 9:

Let
$$y = \cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$$

$$\cos y = -\frac{1}{\sqrt{2}}$$

$$\cos y = -\cos\frac{\pi}{4}$$

$$\cos y = \cos\left(\pi - \frac{\pi}{4}\right) = \cos\frac{3\pi}{4}$$

Since principle value of cos^{-1} is $[0, \pi]$

Therefore, Principle value of $\cos^{-1}\left(\frac{-1}{\sqrt{2}}\right)$ is 3 π / 4.

Solution 10. $\cos ec^{-1}(-\sqrt{2})$

Ley y =
$$\cos ec^{-1}\left(-\sqrt{2}\right)$$

$$\cos ec \ y = -\sqrt{2}$$
$$\cos ec \ y = \cos ec \frac{-\pi}{4}$$

Since principle value of cosec⁻¹ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Therefore, Principle value of $\cos ec^{-1} \left(-\sqrt{2}\right)$ is $-\pi/4$

Find the values of the following:

11.
$$\tan^{-1}(1) + \cos^{-1} - \frac{1}{2} + \sin^{-1} - \frac{1}{2}$$

12.
$$\cos^{-1} \frac{1}{2} + 2 \sin^{-1} \frac{1}{2}$$

13. If $\sin^{-1} x = y$, then

(A)
$$0 \le y \le \pi$$

$$\textbf{(B)} - \frac{\pi}{2} \leq y \leq \frac{\pi}{2}$$

(C)
$$0 < y < \pi$$

(D)
$$-\frac{\pi}{2} < y < \frac{\pi}{2}$$

14.
$$tan^{-1} (\sqrt{3})$$
 - sec ⁻¹ (-2) is equal to

(B)
$$- \pi/3$$

(C)
$$\pi/3$$

Solution 11.
$$\tan^{-1}(1) + \cos^{-1}(\frac{-1}{2}) + \sin^{-1}(\frac{-1}{2})$$

$$= \tan^{-1} \tan \frac{\pi}{4} + \cos^{-1} \left(-\cos \frac{\pi}{3} \right) + \sin^{-1} \left(-\sin \frac{\pi}{6} \right)$$

$$= \frac{\pi}{4} + \cos\left(\pi - \frac{\pi}{3}\right) + \sin^{-1}\sin\left(-\frac{\pi}{6}\right)$$

$$=\frac{\pi}{4}+\frac{2\pi}{3}-\frac{\pi}{6}$$

$$= \frac{3\pi + 8\pi - 2\pi}{12}$$

$$=\frac{9\pi}{12}=\frac{3\pi}{4}$$

Solution 12:

Let
$$\cos^{-1}\left(\frac{1}{2}\right) = x$$
. Then, $\cos x = \frac{1}{2} = \cos\left(\frac{\pi}{3}\right)$

$$\cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$$
Let $\sin^{-1}\left(\frac{1}{2}\right) = y$. Then, $\sin y = \frac{1}{2} = \sin\left(\frac{\pi}{6}\right)$

$$\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$$
Now,
$$\cos^{-1}\left(\frac{1}{2}\right) + 2\sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3} + \frac{2\pi}{6}$$

$$= \frac{\pi}{3} + \frac{\pi}{3}$$

$$= \frac{2\pi}{3}$$

Solution 13: Option (B) is correct.

Given $\sin^{-1} x = y$,

The range of the principle value of \sin^{-1} is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Therefore,
$$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

Solution 14:

Option (B) is correct.

$$\tan^{-1}$$
 ($\sqrt{3})$ - sec $^{\text{-1}}$ (-2) = $\tan^{\text{-1}}$ (tan $\pi/3)$ – sec $^{\text{-1}}$ (-sec $\pi/3)$

$$= \pi/3 - \sec^{-1} (\sec (\pi - \pi/3))$$

$$= \pi/3 - 2\pi/3 = -\pi/3$$