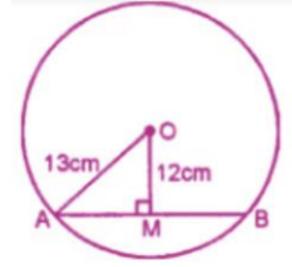


EXERCISE 15.1

1. Calculate the length of a chord which is at a distance of 12 cm from the centre of a circle of radius 13 cm.

Solution:

AB is chord of a circle with center O and OA is its radius OM \perp AB



Therefore, OA = 13 cm, OM = 12 cmNow from right angled triangle OAM, $OA^2 = OM^2 + AM^2$ by using Pythagoras theorem, $13^2 = 12^2 + AM^2$ $AM^2 = 13^2 - 12^2$ $AM^2 = 169 - 144$ $AM^2 = 25$ $AM = 5^2$ We know that OM perpendicular to AB Therefore, M is the midpoint of AB AB = 2 AM AB = 2 (5) AB = 10 cm

2. A chord of length 48 cm is drawn in a circle of radius 25 cm. Calculate its distance from the center of the circle.

Solution:

AB is the chord of the circle with centre O and radius OA OM is perpendicular to AB

Therefore, AB = 48 cm OA = 25 cm OM \perp AB M is the mid-point of AB AM = 1/2 AB = $\frac{1}{2} \times 48 = 24$ cm Now right \triangle OAM, OA² = OM² + AM² (by Pythagoras Axiom) (25)² = OM ² + (24)² OM² = (25)² - (24)² = 625 - 576 = 49 = (7)² OM = 7 cm

3. A chord of length 8 cm is at a distance of 3 cm from the centre of the circle. Calculate the radius of the circle.

Solution:

AB is the chord of a circle with center O And radius OA and OM \perp AB

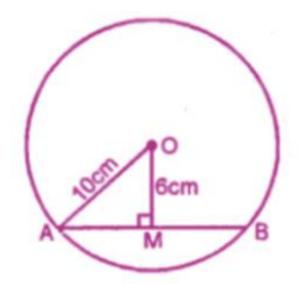
A A M B

AB = 8 cm OM = 3 cm OM \perp AB M is the mid-point of AB AM = $\frac{1}{2}$ AB = $\frac{1}{2} \times 8 = 4$ cm. Now in right \triangle OAM OA² = OM² + AM² (By Pythagoras Axiom) = (3)² + (4)² = 9 + 16 = 25 = (5)² OA = 5 cm.

4. Calculate the length of the chord which is at a distance of 6 cm from the centre of a circle of diameter 20 cm.

Solution:

AB is the chord of the circle with centre O And radius OA and OM \perp AB



Diameter of the circle = 20 cm Radius = 20/2 = 10 cm OA = 10 cm, OM = 6 cm Now in right $\triangle OAM$, OA² = AM² + OM² (By Pythagoras Axiom) (10)² = AM² + (6)² AM² = $10^2 - 6^2$ AM² = $100 - 36 = 64 = (8)^2$ AM = 8 cm OM \perp AB M is the mid-point of AB. AB = 2 AM = 2 × 8 = 16 cm.

5. A chord of length 16 cm is at a distance of 6 cm from the centre of the circle. Find the length of the chord of the same circle which is at a distance of 8 cm from the centre.

Solution:

AB is a chord a circle with centre O and OA is the radius of the circle and OM \perp AB

AB = 16 cm, OM = 6 cm $OM \perp AB$ $AM = \frac{1}{2} \text{ AB} = \frac{1}{2} \times 16 = 8 \text{ cm}$

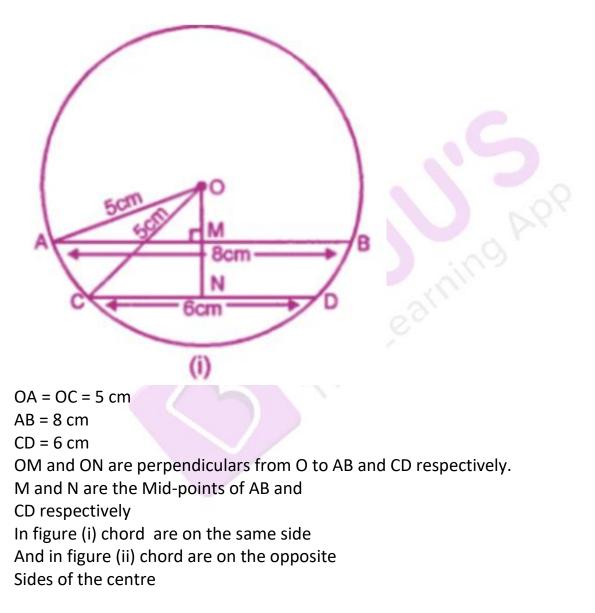
 $OM \perp AB$ $AM = \frac{1}{2}AB = \frac{1}{2} \times 16 = 8 \text{ cm}$ Now in right ΔOAM $OA^2 = AM^2 + OM^2$ (By Pythagoras Axiom) $=(8)^{2}+(6)^{2}$ $64 + 36 = 100 = (10)^2$ Now CD is another chord of the same circle $ON \perp CD$ and OC is the radius. In right ∆ONC $OC^2 = ON^2 + NC^2$ (By Pythagoras Axioms) $(10)^2 = (8)^2 + (NC)^2$ $100 = 64 + NC^2$ $NC^{2} = 100 - 64 = 36 = (6)^{2}$ NC = 6But $ON \perp AB$ N is the mid-point of CD $CD = 2 NC = 2 \times 6 = 12 cm$

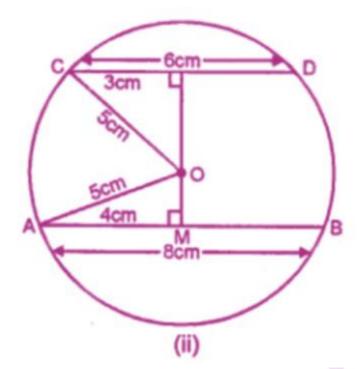
6. In a circle of radius 5 cm, AB and CD are two parallel chords of length 8 cm and 6 cm respectively. Calculate the distance between the chords if they are on :

(i) the same side of the centre.(ii) the opposite sides of the centre

Solution:

Two chords AB and CD of a Circle with centre O and radius OA or OC



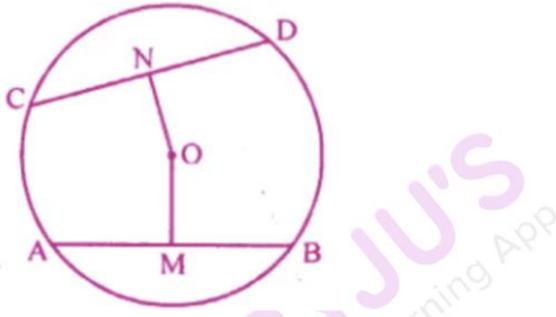


In right ∆OAM $OA^2 = AM^2 + OM^2$ (By Pythagoras Axiom) $(5)^2 = (4)^2 + OM^2$ $AM = \frac{1}{2}AB$ $25 = 16 + OM^2$ $OM^2 = 25 - 16 = 9 = (3)^2$ OM = 3 cm Again in right $\triangle OCN$, $OC^2 = CN^2 + ON^2$ $(5)^2 = (3)^2 + ON^2$ $(CN = \frac{1}{2} CD)$ $25 = 9 + ON^2$ $ON^2 = 25 - 9 = 16 = (4)^2$ ON = 4In fig (i), distance MN = ON - OM= 4 - 3 = 1cm. In fig (ii) MN = OM + ON = 3 + 4 = 7 Cm

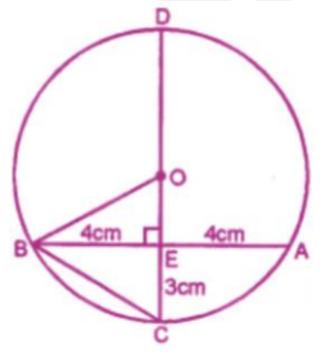
7. (a) In the figure given below, O is the centre of the circle. AB and CD are two chords

of the circle, OM is perpendicular to AB and ON is perpendicular to CD. AB = 24 cm, OM = 5 cm, ON = 12 cm. Find the: (i) radius of the circle.

(ii) length of chord CD.



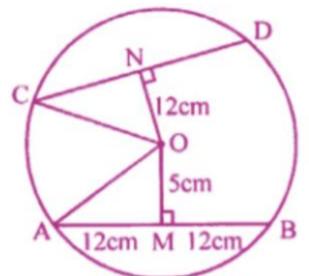
(b) In the figure (ii) given below, CD is the diameter which meets the chord AB in E such that AE = BE = 4 cm. If CE = 3 cm, find the radius of the circle.

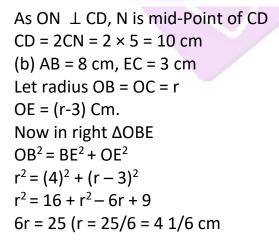


Solution:

(a)Given : AB = 24 cm, OM = 5cm, ON = 12cm OM \perp AB M is midpoint of AB AM = 12 cm

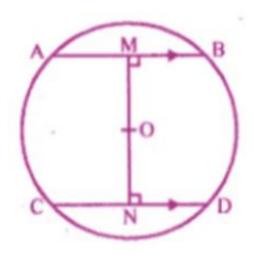
(i) Radius of circle $OA = \sqrt{OM^2 + AM^2}$ (ii) Again $OC^2 = ON^2 + CN^2$ $13^2 = 12^2 + CN^2$ $CN = \sqrt{13^2 - 12^2} = \sqrt{169 - 144} = \sqrt{25}$ CN = 5 cm





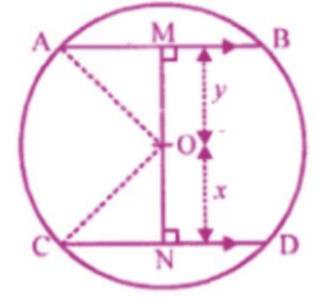
8. In the adjoining figure, AB and CD ate two parallel chords and O is the centre. If the radius of the circle is 15 cm, find the distance MN between the two chords of length

24 cm and 18 cm respectively.



Solution:

In the figure, chords AB || CD O is the centre of the circle Radius of the Circle = 15 cm Length of AB = 24 cm and CD = 18 cm Join OA and OC



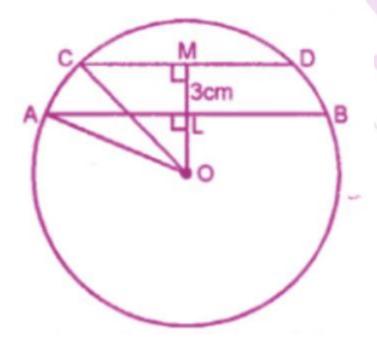
AB = 24 cm and OM \perp AB AM = MB = 24/2 = 12 cm Similarly ON \perp CD CN = ND = 18/2 = 9 cm

Similarly In right \triangle CNO OC² = CN² + ON² (15)² = (9)² + ON² 225 = 81 + ON² ON² = 225 - 81 = 144 = (12)² ON = 12 cm Now MN = OM + ON = 9 + 12 + 21 cm

9. AB and CD are two parallel chords of a circle of lengths 10 cm and 4 cm respectively. If the chords lie on the same side of the centre and the distance between them is 3 cm, find the diameter of the circle.

Solution :

AB and CD are two parallel chords and AB = 10 cm, CD = 4 cm and distance between AB and CD = 3 cm



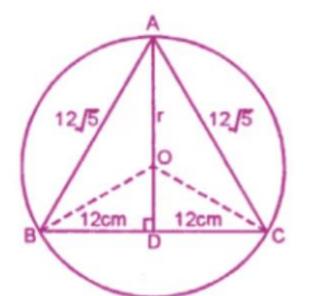
Let radius of circle OA = OC = r OM \perp CD which intersects AB in L. Let OL =x, then OM = x + 3 Now right \triangle OLA OA² = AL² + OL² r² = (5)² + x² = 25 + x² (I is mid- point of AB)

Again in right ∆OCM $OC^2 = CM^2 + OM^2$ $r^2 = (2)^2 + (x + 3)^2$ (M is mid-point of CD) $r^2 = 4 + (x + 3)^2$ (M is mid-Point of CD) $r^2 = 4 + (x + 3)^2$ from (i) and (ii) $25 + x^2 = 4 + (x + 3)^2$ $25 + x^2 = 4 + x^2 + 9 + 6x$ 6x = 25 - 13 = 12x = 12/6 = 2 cmSubstituting the value of x in (i) $r^2 = 25 + x^2 = 25 + (2)^2 = 25 + 4$ $r^2 = 29$ r = √29cm Diameter of the circle = 2 r $= 2 \times \sqrt{29}$ cm $= 2 \sqrt{29}$ cm

10. ABC is an isosceles triangle inscribed in a circle. If $AB = AC = 12\sqrt{5}$ cm and BC = 24 cm, find the radius of the circle.

Solution :

AB = AC $12\sqrt{5}$ and BC = 24 cm.

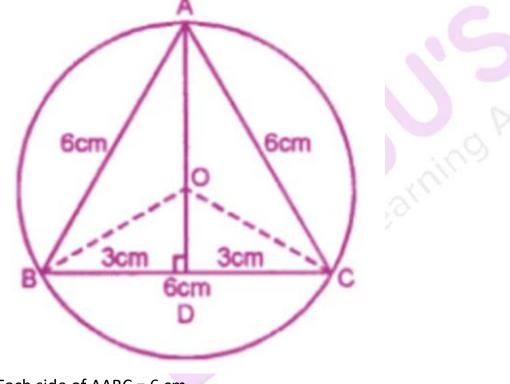


Join OB and OC and OA Draw AD \perp BC which will pass through Centre O OD bisect BC in D BD = DC = 12 cmIn right ∆ABD $AB^2 = AD^2 + BD^2$ $(12\sqrt{5})^2 = AD^2 + BD^2$ $(12\sqrt{5})^2 = AD^2 + (12)^2$ $144 \times 5 = AD^2 + 144$ $720 - 144 = AD^2$ $AD^2 = 576 (AD = \sqrt{576} = 24)$ Let radius of the circle = OA = OB = OC = rOD = AD - AO = 24 - rNow in right $\triangle OBD$, $OB^2 = BD^2 + OD^2$ $r^2 = (12)^2 + (24 - r)^2$ r² =144 + 576 + r² - 48r 48r = 720 48r = 720 r = 720/48 = 48r 48r = 720 r = 720/48 = 15cm. Radius = 15 cm.

11. An equilateral triangle of side 6 cm is inscribed in a circle. Find the radius of the circle.

Solution :

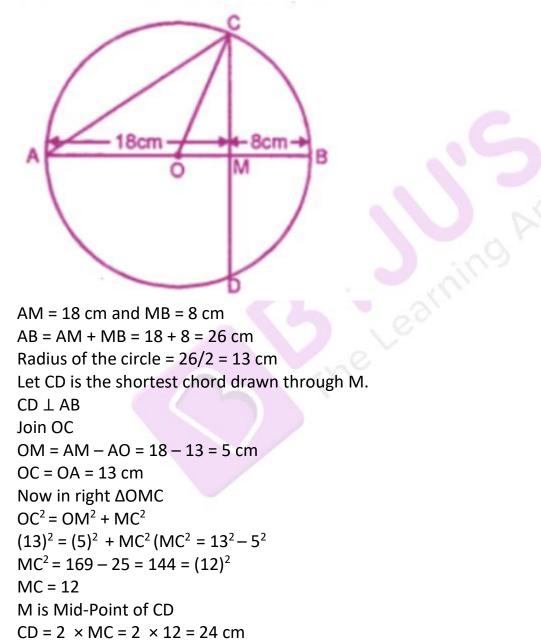
ABC is an equilateral triangle inscribed in a Circle with centre O. Join OB and OC, From A, Draw AD \perp BC which will pass Through the centre O of the circle.



Each side of $\triangle ABC = 6$ cm. $AD = \sqrt{3}/2 = \sqrt{3}/2 \times 6 = 3 \sqrt{3}$ cm. $OD = AD - AO = 3\sqrt{3} - r$ Now in right $\triangle OBD$ $OB^2 = BD^2 + OD^2$ $r^2 = (3)^2 + (3\sqrt{3}-r)^2$ $r^2 = 9 + 27 + r^2 - 6 \sqrt{3}r$ (D is mid-point of BC) $6\sqrt{3}r = 36$ $R = 36/6\sqrt{3} = 6/\sqrt{3} \times \sqrt{3}/\sqrt{3} = 6\sqrt{3}/3 = 2\sqrt{3}$ cm Radius = $2\sqrt{3}$ cm

12. AB is a diameter of a circle. M is a point in AB such that AM = 18 cm and MB = 8 cm. Find the length of the shortest chord through M.

Solution:



EXERCISE 15.2

1. If arcs APB and CQD of a circle are congruent, then find the ratio of AB: CD.

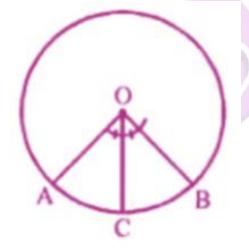
Solution:

arc APB = arc CQD (given) AB = CD (if two arcs are congruent, then their Corresponding chords are equal) Ratio of AB and CD = AB / CD = AB /AB = 1/1 AB : CD = 1/1

2. A and B are points on a circle with centre O. C is a point on the circle such that OC bisects ∠AOB, prove that OC bisects the arc AB.

Solution:

Given : in a given circle with centre O,A And B are Two points on the circle. C i another point on the circle such that $\angle AOC = \angle BOC$



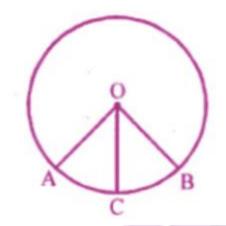
To prove : arc AC = arc BC Proof : OC is the bisector of $\angle AOB$ Or $\angle AOC = \angle BOC$ But these are the angle subtended by the arc AC and BC

arc AC = arc BC.

3. Prove that the angle subtended at the centre of a circle is bisected by the radius passing through the mid-point of the arc.

Solution :

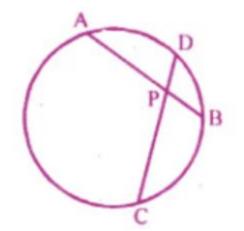
Given : AB is the arc of the circle with Centre O and C is the mid-Point od arc AB. To prove : OC bisects the $\angle AOB$ I,e $\angle AOC = \angle BOC$ Proof : C is the mid-point of arc AB. arc AC = arc BC



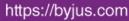
But arc AC and arc BC subtend $\angle AOC$ and $\angle BOC$ at the centre $\angle AOC = \angle BOC$ Hence OC Bisects the $\angle AOB$.

4. In the given figure, two chords AB and CD of a circle intersect at P. If AB = CD, prove that arc AD = arc CB.

Solution :

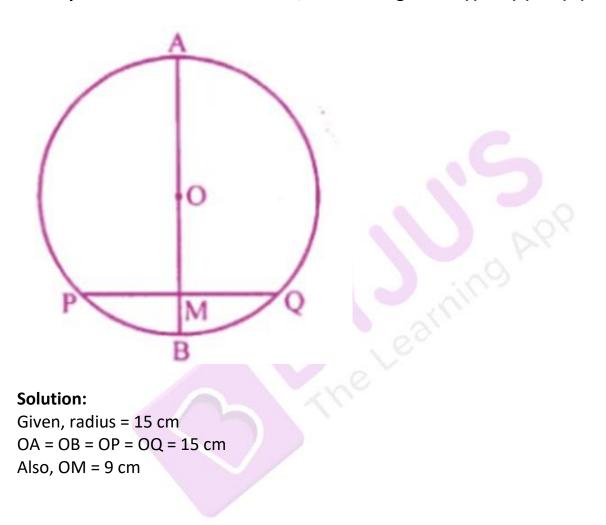


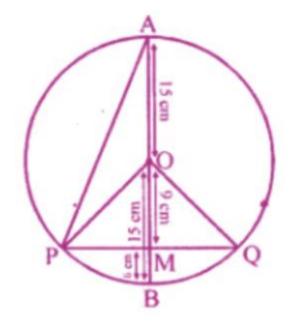
Given: two chord AB and CD of a Circle Intersect at P and AB = CD To prove : arc AD = arc CB Proof : AB = CD (given) minor arc AB = minor arc CD subtracting arc BD from both sides arc AB = arc BD = arc CD – arc BD arc AD = arc CD



CHAPTER TEST

1. In the given figure, a chord PQ of a circle with centre O and radius 15 cm is bisected at M by a diameter AB. If OM = 9 cm, find the lengths of : (i) PQ (ii) AP (iii) BP





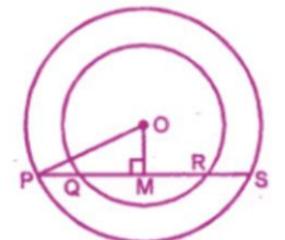
MB = OB - OM = 15 - 9 = 6 cmAM = OA + OM =15 + 9 cm = 24 cm In ΔOMP, By using Pythagoras Theorem, $OP^2 = OM^2 + PM^2$ $15^2 = 9^2 + PM^2$ $PM^2 = 255 - 81$ PM = √144 = 12 cm Also, In ΔOMQ By using Pythagoras Theorem $OQ^2 = OM^2 + QM^2$ $15^2 = OM^2 + QM^2$ $15^2 = 9^2 + QM^2 (QM^2 = 225 - 81)$ QM = √144 = 12 cm PQ = PM + QM(As radius is bisected at M) PQ = 12 + 12 cm = 24 cm (ii) Now in $\triangle APM$ $AP^2 = AM^2 + OM^2$ $AP^2 = 24^2 + 12^2$ $AP^2 = 576 + 144$ AP = √720 = 12 √5 cm (iii) Now In ΔBMP $BP^2 = BM^2 + PM^2$

 $BP^{2} = 6^{2} + 12^{2}$ BP^{2} = 36 + 144 BP = $\sqrt{180} = 6\sqrt{5}$ cm

2. The radii of two concentric circles are 17 cm and 10 cm ; a line PQRS cuts the larger circle at P and S and the smaller circle at Q and R. If QR = 12 cm, calculate PQ.

Solution :

A line PQRS intersects the outer circle at P And S and inner circle at Q and R radius of Outer circle OP = 17 cm and radius of inner Circle OQ = 10 cm



QR = 12 cm From O, draw OM \perp PS QM = $\frac{1}{2}$ QR = $\frac{1}{2} \times 12 = 6$ cm In right $\triangle OQM$ OQ² = OM² + QM² (10)² = OM² + (6)² OM² = 10² - 6² = 100 - 36 = 64 = (8)² OM = 8 cm Now in right $\triangle OPM$ OP² OM² + PM² (17)² = OM² + PM² PM² = (17)² - (8)²

= 289 - 64 = 225 = (15)² PM = 15 cm PQ = PM - QM = 15 - 6 = 9 cm

