

EXERCISE 4.1

1. (i) $8xy^3 + 12x^2y^2$

Solution:-

 $8xy^3 + 12x^2y^2$

Take out common in both terms,

Then, $4xy^{2}(2y + 3x)$

Therefore, HCF of $8xy^3$ and $12x^2y^2$ is $4xy^2$.

(ii) $15 ax^3 - 9ax^2$

Solution:-

 $15 ax^3 - 9ax^2$

Take out common in both terms,

Then, $3ax^{2}$ (5x - 3)

Therefore, HCF of 15 ax^3 and $9ax^2$ is $3ax^2$.

2.

(i) $21py^2 - 56py$

Solution:-

 $21py^2 - 56py$

Take out common in both terms,

Then, 7py (3y - 8)

Therefore, HCF of 21py² and 56py is 7py.

(ii) $4x^3 - 6x^2$

Solution:-

$$4x^3 - 6x^2$$

Take out common in both terms,

Then, $2x^2(2x - 3)$

Therefore, HCF of $4x^3$ and $6x^2$ is $2x^2$.

3.

(i) $2\pi r^2 - 4\pi r$

Solution:-

 $2\pi r^{2} - 4\pi r$

Take out common in both terms,

Then, $2\pi r (r - 2)$

Therefore, HCF of $2\pi r^2$ and $4\pi r$ is $2\pi r$.

(ii) 18m + 16n

Solution:-

18m + 16n

Take out common in both terms,

Then, 2 (9m - 8n)

Therefore, HCF of 18m and 16n is 2.

4.

(i) $25abc^2 - 15a^2b^2c$

Solution:-

 $25abc^2 - 15a^2b^2c$

Take out common in both terms,

Then, 5abc (5c – 3ab)

Therefore, HCF of 25abc² and 15a²b²c is 5abc.

(ii) $28p^2q^2r - 42pq^2r^2$

Solution:-

 $28p^2q^2r - 42pq^2r^2$

Take out common in both terms,

Then, $14pq^2r(2p-3r)$

Therefore, HCF of $28p^2q^2r$ and $42pq^2r^2$ is $14pq^2r$.

5.

(i)
$$8x^3 - 6x^2 + 10x$$

Solution:-

$$8x^3 - 6x^2 + 10x$$

Take out common in both terms,

Then, $2x(4x^2 - 3x + 5)$

Therefore, HCF of $8x^3$, $6x^2$ and 10x is 2x.

(ii) 14mn + 22m - 62p

Solution:-

14mn + 22m - 62p

Take out common in both terms,

Then, 2 (7mn + 11m - 31p)

Therefore, HCF of 14mn, 22m and 62p is 2.

6.

(i)
$$18p^2q^2 - 24pq^2 + 30p^2q$$

Solution:-

 $18p^2q^2 - 24pq^2 + 30p^2q$

Take out common in both terms,

Then, 6pq (3pq - 4q + 5p)

Therefore, HCF of $18p^2q^2$, $24pq^2$ and $30p^2q$ is 6pq.

(ii) $27a^3b^3 - 18a^2b^3 + 75a^3b^2$

Solution:-

 $27a^3b^3 - 18a^2b^3 + 75a^3b^2$

Take out common in both terms,

Then, $3a^2b^2$ (9a – 6b + 25a)

Therefore, HCF of $27a^3b^3$, $18a^2b^3$ and $75a^3b^2$ is $3a^2b^2$.

7.

(i)
$$15a (2p - 3q) - 10b (2p - 3q)$$

Solution:-

15a (2p - 3q) - 10b (2p - 3q)

Take out common in both terms,

Then, 5(2p - 3q) [3a - 2b]

Therefore, HCF of 15a (2p - 3q) and 10b (2p - 3q) is 5(2p - 3q).

(ii) $3a(x^2 + y^2) + 6b(x^2 + y^2)$

Solution:-

$$3a(x^2 + y^2) + 6b(x^2 + y^2)$$

Take out common in all terms,

Then, $3(x^2 + y^2)$ (a + 2b)

Therefore, HCF of $3a(x^2 + y^2)$ and $6b(x^2 + y^2)$ is $3(x^2 + y^2)$.

8.

(i)
$$6(x + 2y)^3 + 8(x + 2y)^2$$

Solution:-

$$6(x + 2y)^3 + 8(x + 2y)^2$$

Take out common in all terms,

Then, $2(x + 2y)^2 [3(x + 2y) + 4]$ Therefore, HCF of $6(x + 2y)^3$ and $8(x + 2y)^2$ is $2(x + 2y)^2$.

(ii) $14(a-3b)^3-21p(a-3b)$

Solution:-

 $14(a-3b)^3-21p(a-3b)$

Take out common in all terms,

Then, $7(a-3b)[2(a-3b)^2-3p]$

Therefore, HCF of $14(a - 3b)^3$ and 21p(a - 3b) is 7(a - 3b).

9.

(i) $10a(2p + q)^3 - 15b(2p + q)^2 + 35(2p + q)$

Solution:-

 $10a(2p+q)^3 - 15b(2p+q)^2 + 35(2p+q)$

Take out common in all terms,

Then, $5(2p + q) [2a (2p + q)^2 - 3b (2p + q) + 7]$

Therefore, HCF of $10a(2p + q)^3$, $15b(2p + q)^2$ and 35(2p + q) is 5(2p + q).

(ii) $x(x^2 + y^2 - z^2) + y(-x^2 - y^2 + z^2) - z(x^2 + y - z^2)$

Solution:-

 $x(x^2 + y^2 - z^2) + y(-x^2 - y^2 + z^2) - z(x^2 + y - z^2)$

Take out common in all terms,

Then, $(x^2 + y^2 - z^2)[x - y - z]$

Therefore, HCF of $x(x^2 + y^2 - z^2)$, $y(-x^2 - y^2 + z^2)$ and $z(x^2 + y - z^2)$ is $(x^2 + y^2 - z^2)$

EXERCISE 4.2

1.

(i)
$$x^2 + xy - x - y$$

Solution:-

$$x^2 + xy - x - y$$

Take out common in all terms,

$$x(x+y)-1(x+y)$$

$$(x + y) (x - 1)$$

(ii)
$$y^2 - yz - 5y + 5z$$

Solution:-

$$y^2 - yz - 5y + 5z$$

Take out common in all terms,

$$y(y - z) - 5(y - z)$$

$$(y - z) (y - 5)$$

2.

(i)
$$5xy + 7y - 5y^2 - 7x$$

Solution:-

$$5xy - 7x - 5y^2 + 7y$$

Take out common in all terms,

$$x(5y - 7) - y(5y - 7)$$

$$(5y - 7)(x - y)$$

(ii) $5p^2 - 8pq - 10p + 16q$

Solution:-

$$5p^2 - 8pq - 10p + 16q$$

Take out common in all terms,

$$p(5p - 8q) - 2(5p - 8q)$$

$$(5p - 8q) (p - 2)$$

3.

(i)
$$a^2b - ab^2 + 3a - 3b$$

Solution:-

$$a^{2}b - ab^{2} + 3a - 3b$$

Take out common in all terms,

$$ab(a - b) + 3(a - b)$$

(a - b) (ab + 3)

(ii)
$$x^3 - 3x^2 + x - 3$$

Solution:-

$$x^3 - 3x^2 + x - 3$$

Take out common in all terms,

$$x^{2}(x-3) + 1(x-3)$$

$$(x - 3) (x^2 + 1)$$

4.

(i)
$$6xy^2 - 3xy - 10y + 5$$

Solution:-

$$6xy^2 - 3xy - 10y + 5$$

Take out common in all terms,

$$3xy(2y - 1) - 5(2y - 1)$$

$$(2y - 1)(3xy - 5)$$

(ii) 3ax - 6ay - 8by + 4bx

Solution:-

$$3ax - 6ay - 8by + 4bx$$

Take out common in all terms,

$$3a(x-2y) + 4b(x-2y)$$

$$(x - 2y) (3a + 4b)$$

5.

(i)
$$1 - a - b + ab$$

Solution:-

$$1 - a - b + ab$$

Take out common in all terms,

$$1(1 - a) - b(1 - a)$$

(ii) a(a - 2b - c) + 2bc

Solution:-

$$a(a - 2b - c) + 2bc$$

Above question can be written as,

$$a^2 - 2ab - ac + 2bc$$

Take out common in all terms,
 $a(a - 2b) - c(a + 2b)$
 $(a - 2b) (a - c)$

(i)
$$x^2 + xy (1 + y) + y^3$$

Solution:-

$$x^2 + xy (1 + y) + y^3$$

Above question can be written as,

$$x^2 + xy + xy^2 + y^3$$

Take out common in all terms,

$$x(x + y) + y^2(x + y)$$

$$(x + y) (x + y^2)$$

(ii)
$$y^2 - xy (1 - x) - x^3$$

Solution:-

$$y^2 - xy (1 - x) - x^3$$

Above question can be written as,

$$y^2 - xy + x^2y - x^3$$

Take out common in all terms,

$$y(y - x) + x^2 (y - x)$$

$$(y - x) (y + x^2)$$

7.

(i)
$$ab^2 + (a - 1)b - 1$$

Solution:-

$$ab^2 + (a - 1)b - 1$$

Above question can be written as,

$$ab^{2} + ab - b - 1$$

Take out common in all terms,

$$ab(b + 1) - 1(b + 1)$$

$$(b + 1) (ab - 1)$$

(ii)
$$2a - 4b - xa + 2bx$$

$$2a - 4b - xa + 2bx$$

Take out common in all terms, 2(a-2b)-x(a-2b)(a-2b)(2-x)

8.

(i) 5ph - 10qk + 2rph - 4qrk Solution:-

5ph – 10qk + 2rph – 4qrk
Re-arranging the given question we get,
5ph + 2rph – 10qk – 4qrk
Take out common in all terms,
ph(5 + 2r) – 2qk(5 + 2r)
(5 + 2r) (ph – 2qk)

(ii) $x^2 - x(a + 2b) + 2ab$

Solution:-

$$x^2 - x(a + 2b) + 2ab$$

Above question can be written as,
 $x^2 - xa - 2xb + 2ab$
Take out common in all terms,
 $x(x - a) - 2b(x - a)$
 $(x - a)(x - 2b)$

9.

(i)
$$ab(x^2 + y^2) - xy(a^2 + b^2)$$

Solution:-

$$ab(x^2 + y^2) - xy(a^2 + b^2)$$

Above question can be written as, $abx^2 + aby^2 - xya^2 - xyb^2$ Re-arranging the above we get, $abx^2 - xyb^2 + aby^2 - xya^2$ Take out common in all terms,

$$bx(ax - by) + ay(by - ax)$$

 $bx(ax - by) - ay(ax - by)$

(ii)
$$(ax + by)^2 + (bx - ay)^2$$

Solution:-

By expanding the give question, we get, $(ax)^2 + (by)^2 + 2axby + (bx)^2 + (ay)^2 - 2bxay$ $a^2x^2 + b^2y^2 + b^2x^2 + a^2y^2$ Re-arranging the above we get, $a^2x^2 + a^2y^2 + b^2y^2 + b^2x^2$ Take out common in all terms, $a^2(x^2 + y^2) + b^2(x^2 + y^2)$ $(x^2 + y^2)(a^2 + b^2)$

10.

(i) $a^3 + ab(1 - 2a) - 2b^2$

Solution:-

$$a^3 + ab(1 - 2a) - 2b^2$$

Above question can be written as,
 $a^3 + ab - 2a^2b - 2b^2$

Re-arranging the above we get,

$$a^3 - 2a^2b + ab - 2b^2$$

Take out common in all terms,

$$a^{2}(a-2b) + b(a-2b)$$

$$(a - 2b) (a^2 + b)$$

(ii) $3x^2y - 3xy + 12x - 12$

Solution:-

$$3x^2y - 3xy + 12x - 12$$

Take out common in all terms,

$$3xy(x-1) + 12(x-1)$$

$$(x - 1) (3xy + 12)$$

11. $a^2b + ab^2 - abc - b^2c + axy + bxy$

Solution:-

$$a^2b + ab^2 - abc - b^2c + axy + bxy$$

Re-arranging the above we get,

$$a^2b - abc + axy + ab^2 - b^2c + bxy$$

Take out common in all terms, a(ab - bc + xy) + b(ab - bc + xy)

$$(a + b) (ab - bc + xy) + b(ab - bc + xy)$$

12. $ax^2 - bx^2 + ay^2 - by^2 + az^2 - bz^2$ Solution:-

$$ax^2 - bx^2 + ay^2 - by^2 + az^2 - bz^2$$

Re-arranging the above we get,
 $ax^2 + ay^2 + az^2 - bx^2 - by^2 - bz^2$
Take out common in all terms,
 $a(x^2 + y^2 + z^2) - b(x^2 + y^2 + z^2)$
 $(x^2 + y^2 + z^2)$ (a - b)

13.
$$x - 1 - (x - 1)^2 + ax - a$$

Solution:-

$$x-1-(x-1)^2 + ax - a$$

By expanding the above we get,
 $X-1-(x^2+1-2x) + ax - a$
 $x-1-x^2-1+2x+ax-a$
 $2x-x^2+ax-2+x-a$

Take out common in all terms, x(2-x+a) - 1(2-x+a)

$$(2-x+a)(x-1)$$

EXERCISE 4.3

1. $4x^2 - 25y^2$

Solution:-

We know that, $a^2 - b^2 = (a + b) (a - b)$

So, $(2x)^2 - (5y)^2$

Then, (2x + y)(2x - 5y)

(ii) $9x^2 - 1$

Solution:-

We know that, $a^2 - b^2 = (a + b) (a - b)$

So, $(3x)^2 - 1^2$

Then, (3x + 1)(3x - 1)

2.

(i) $150 - 6a^2$

Solution:-

$$150 - 6a^2$$

Take out common in all terms,

$$6(25 - a^2)$$

$$6(5^2 - a^2)$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

So, 6(5 + a) (5 - a)

(ii) $32x^2 - 18y^2$

Solution:-

$$32x^2 - 18y^2$$

Take out common in all terms,

$$2(16x^2 - 9y^2)$$

$$2((4x)^2 - (3y)^2)$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

2(4x + 3y) (4x - 3y)

3.

(ii)
$$(x - y)^2 - 9$$

$$(x - y)^2 - 9$$

$$(x - y)^2 - 3^2$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$(x-y+3)(x-y-3)$$

(ii) $9(x + y)^2 - x^2$

Solution:-

$$9[(x + y)^2 - x^2]$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$9[(x + y + x) (x + y - x)]$$

So,
$$9(2x + y) y$$

$$9y(2x + y)$$

4.

(i) $20x^2 - 45y^2$

Solution:-

$$20x^2 - 45y^2$$

Take out common in all terms,

$$5(4x^2 - 9y^2)$$

$$5((2x)^2 - (3y)^2)$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$5(2x + 3y)(2x - 3y)$$

(ii) $9x^2 - 4(y + 2x)^2$

Solution:-

$$9x^2 - 4(y + 2x)^2$$

Above question can be written as,

$$(3x)^2 - [2(y + 2x)]^2$$

$$(3x)^2 - (2y + 4x)^2$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$(3x + 2y + 4x) (3x - 2y - 4x)$$

$$(7x + 2y) (-x - 2y)$$

5.

(i)
$$2(x-2y)^2-50y^2$$

Solution:-

$$2(x-2y)^2-50y^2$$

Take out common in all terms,

$$2[(x-2y)^2-25y^2]$$

$$2[(x-2y)^2-(5y)^2]$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$2[(x-2y+5y)(x-2y-5y)]$$

$$2[(x + 3y) (x - 7y)]$$

$$2(x + 3y)(x - 7y)$$

(ii) $32 - 2(x - 4)^2$

Solution:-

$$32 - 2(x - 4)^2$$

Take out common in all terms,

$$2[16 - (x - 4)^2]$$

$$2[4^2-(x-4)^2]$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$2[(4 + x - 4) (4 - x + 4)]$$

$$2[(x)(8-x)]$$

$$2x (8 - x)$$

6.

(i)
$$108a^2 - 3(b - c)^2$$

Solution:-

$$108a^2 - 3(b - c)^2$$

Take out common in all terms,

$$3[36a^2 - (b - c)^2]$$

$$3[(6a)^2 - (b - c)^2]$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$3[(6a + b - c) (6a - b + c)]$$

(ii) $\pi a^5 - \pi^3 a b^2$

Solution:-

$$\pi a^5 - \pi^3 ab^2$$

Take out common in all terms,

$$\pi a(a^4 - \pi^2 b^2)$$

$$\pi a((a^2)^2 - (\pi b)^2)$$

We know that,
$$a^2 - b^2 = (a + b) (a - b)$$

$$\pi a(a^2 + \pi b) (a^2 - \pi b)$$

(i)
$$50x^2 - 2(x - 2)^2$$

Solution:-

$$50x^2 - 2(x - 2)^2$$

Take out common in all terms,

$$2[25x^2 - (x - 2)^2]$$

$$2[(5x)^2 - (x - 2)^2]$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$2[(5x + x - 2) (5x - x + 2)]$$

$$2[(6x - 2)(4x + 2)]$$

$$2(6x - 2)(4x + 2)$$

(ii) (x - 2)(x + 2) + 3

Solution:-

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$(x^2-2^2)+3$$

$$X^2 - 4 + 3$$

$$X^2 - 1$$

Then,

$$(x + 1) (x - 1)$$

8.

(i)
$$x - 2y - x^2 + 4y^2$$

Solution:-

$$x - 2y - x^2 + 4y^2$$

$$x - 2y - (x^2 + (2y)^2)$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$x-2y-[(x+2y)(x-2y)]$$

Take out common in all terms,

$$(x-2y)(1-(x+2y))$$

$$(x-2y)(1-x-2y)$$

(ii)
$$4a^2 - b^2 + 2a + b$$

Solution:-

$$4a^2 - b^2 + 2a + b$$

$$(2a)^2 - b^2 + 2a + b$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$((2a + b) (2a - b)) + 1(2a + b)$$

Take out common in all terms,
 $(2a + b) (2a - b + 1)$

(i)
$$a(a - 2) - b(b - 2)$$

Solution:-

$$a(a - 2) - b(b - 2)$$

Above question can be written as,

$$a^2 - 2a - b^2 - 2b$$

Rearranging the above terms, we get,

$$a^2 - b^2 - 2a - 2b$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$[(a + b)(a - b)] - 2(a - b)$$

Take out common in all terms,

$$(a - b) (a + b - 2)$$

(ii)
$$a(a - 1) - b(b - 1)$$

Solution:-

$$a(a - 1) - b(b - 1)$$

Above question can be written as,

$$a^2 - a - b^2 + b$$

Rearranging the above terms, we get,

$$a^2 - b^2 - a + b$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$[(a + b) (a - b)] - 1 (a - b)$$

Take out common in all terms,

$$(a - b) (a + b - 1)$$

10.

(i)
$$9 - x^2 + 2xy - y^2$$

Solution:-

$$9 - x^2 + 2xy - y^2$$

$$9 - x^2 + 2xy - y^2$$

Above terms can be written as,

$$9 - x^2 + xy + xy - y^2$$

Now,

$$9 - x^2 + xy + 3x - 3x + 3y - 3y + xy - y^2$$

Rearranging the above terms, we get,
 $9 - 3x + 3y + 3x - x^2 + xy + xy - 3y - y^2$
Take out common in all terms,
 $3(3 - x + y) + x(3 - x + y) + y(-3 - y + x)$

$$3(3-x+y) + x(3-x+y) + y(-3-y+x)$$

 $3(3-x+y) + x(3-x+y) - y(3-x+y)$

$$(3 - x + y) (3 + x - y)$$

(ii) $9x^4 - (x^2 + 2x + 1)$

Solution:-

$$9x^4 - (x^2 + 2x + 1)$$

Above terms can be written as,

$$(3x^2)^2 - (x+1)^2$$

... [because
$$(a + b)^2 = a^2 + 2ab + b^2$$
]

We know that,
$$a^2 - b^2 = (a + b) (a - b)$$

So,
$$(3x^2 + x + 1)(3x^2 - x - 1)$$

11.

(i)
$$9x^4 - x^2 - 12x - 36$$

Solution:-

$$9x^4 - x^2 - 12x - 36$$

Above terms can be written as,

$$9x^4 - (x^2 + 12x + 36)$$

We know that, $(a + b)^2 = a^2 + 2ab + b^2$

$$(3x^2)^2 - (x^2 + (2 \times 6 \times x) + 6^2)$$

So,
$$(3x^2)^2 - (x + 6)^2$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$(3x^2 + x + 6) (3x^2 - x - 6)$$

(ii) $x^3 - 5x^2 - x + 5$

Solution:-

$$x^3 - 5x^2 - x + 5$$

Take out common in all terms,

$$x^2(x-5) - 1(x-5)$$

$$(x - 5) (x^2 - 1)$$

$$(x-5)(x^2-1^2)$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$(x - 5) (x + 1) (x - 1)$$

(i)
$$a^4 - b^4 + 2b^2 - 1$$

Solution:-

$$a^4 - b^4 + 2b^2 - 1$$

Above terms can be written as,

$$a^4 - (b^4 - 2b^2 + 1)$$

We know that, $(a - b)^2 = a^2 - 2ab + b^2$

$$a^4 - ((b^2)^2) - (2 \times b^2 \times 1) + 1^2)$$

$$(a^2)^2 - (b^2 - 1)^2$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$(a^2 + b^2 - 1) (a^2 - b^2 + 1)$$

(ii) $x^3 - 25x$

Solution:-

$$x^3 - 25x$$

Take out common in all terms,

$$x(x^2 - 25)$$

Above terms can be written as,

$$x(x^2 - 5^2)$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$x(x + 5) (x - 5)$$

13.

(i)
$$2x^4 - 32$$

Solution:-

$$2x^4 - 32$$

Take out common in all terms,

$$2(x^4 - 16)$$

Above terms can be written as,

$$2((x^2)^2-4^2)$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$2(x^2 + 4)(x^2 - 4)$$

$$2(x^2+4)(x^2-2^2)$$

$$2(x^2 + 4)(x + 2)(x - 2)$$

(ii) $a^2(b + c) - (b + c)^3$

$$a^{2}(b + c) - (b + c)^{3}$$

Take out common in all terms,

$$(b + c) (a^2 - (b + c)^2)$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$(b + c) (a + b + c) (a - b - c)$$

14.

(i)
$$(a + b)^3 - a - b$$

Solution:-

$$(a + b)^3 - a - b$$

Above terms can be written as,

$$(a + b)^3 - (a + b)$$

Take out common in all terms,

$$(a + b) [(a + b)^2 - 1]$$

$$(a + b) [(a + b)^2 - 1^2]$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$(a + b) (a + b + 1) (a + b - 1)$$

(ii) $x^2 - 2xy + y^2 - a^2 - 2ab - b^2$

Solution:-

$$x^2 - 2xy + y^2 - a^2 - 2ab - b^2$$

Above terms can be written as,

$$(x^2 - 2xy + y^2) - (a^2 + 2ab + b^2)$$

We know that, $(a + b)^2 = a^2 + 2ab + b^2$ and $(a - b)^2 = a^2 - 2ab + b^2$

$$(x^2 - (2 \times x \times y) + y^2) - (a^2 + (2 \times a \times b) + b^2)$$

$$(x - y)^2 - (a + b)^2$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$[(x-y)+(a+b)][(x-y)-(a+b)]$$

$$(x - y + a + b) (x - y - a - b)$$

15.

(i)
$$(a^2 - b^2) (c^2 - d^2) - 4abcd$$

$$(a^2 - b^2) (c^2 - d^2) - 4abcd$$

$$a^{2}(c^{2}-d^{2})-b^{2}(c^{2}-d^{2})-4abcd$$

$$a^2c^2 - a^2d^2 - b^2c^2 + b^2d^2 - 4abcd$$

$$a^2c^2 + b^2d^2 - a^2d^2 - b^2c^2 - 2abcd - 2abcd$$

Rearranging the above terms, we get, $a^2c^2 + b^2d^2 - 2abcd - a^2d^2 - b^2c^2 - 2abcd$ We know that, $(a + b)^2 = a^2 + 2ab + b^2$ and $(a - b)^2 = a^2 - 2ab + b^2$ $(ac - bd)^2 - (ad - bc)^2$ (ac - bd + ad - bc) (ac - bd - ad + bc)

(ii) $4x^2 - y^2 - 3xy + 2x - 2y$

Solution:-

$$4x^2 - y^2 - 3xy + 2x - 2y$$

Above terms can be written as,

$$x^2 + 3x^2 - y^2 - 3xy + 2x - 2y$$

Rearranging the above terms, we get,

$$(x^2 - y^2) + (3x^2 - 3xy) + (2x - 2y)$$

We know that, $a^2 - b^2 = (a + b) (a - b)$ and take out common terms,

$$(x + y) (x - y) + 3x(x - y) + 2(x - y)$$

$$(x - y) [(x + y) + 3x + 2]$$

$$(x - y) (x + y + 3x + 2)$$

$$(x - y) (4x + y + 2)$$

16.

(i) $x^2 + 1/x^2 - 11$

Solution:-

$$x^2 + 1/x^2 - 11$$

Above terms can be written as,

$$x^2 + (1/x^2) - 2 - 9$$

Then,
$$(x^2 + (1/x^2) - 2) - 3^2$$

We know that, $(a - b)^2 = a^2 - 2ab + b^2$,

$$(x^2 - (2 \times x^2 \times (1/x^2)) + (1/x)^2)$$

$$(x-1/x)^2-3^2$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$(x-1/x+3)(x-1/x-3)$$

(ii) $x^4 + 5x^2 + 9$

$$x^4 + 5x^2 + 9$$

$$x^4 + 6x^2 - x^2 + 9$$

$$(x^4 + 6x^2 + 9) - x^2$$

$$((x^2)^2 + (2 \times x^2 \times 3) + 3^2)$$

We know that, $(a + b)^2 = a^2 + 2ab + b^2$,
 $((x^2)^2 + (2 \times x^2 \times 3) + 3^2)$
So, $(x^2 + 3)^2 - x^2$
We know that, $a^2 - b^2 = (a + b) (a - b)$
 $(x^2 + 3 + x) (x^2 + 3 - x)$

(i)
$$a^4 + b^4 - 7a^2b^2$$

Solution:-

$$a^4 + b^4 - 7a^2b^2$$

Above terms can be written as,

$$a^4 + b^4 + 2a^2b^2 - 9a^2b^2$$

We know that, $(a + b)^2 = a^2 + 2ab + b^2$,

$$[(a^2)^2 + (b^2)^2 + (2 \times a^2 \times b^2)] - (3ab)^2$$

$$(a^2 + b^2)^2 - (3ab)^2$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$(a^2 + b^2 + 3ab) (a^2 + b^2 - 3ab)$$

(ii) $x^4 - 14x^2 + 1$

Solution:-

$$x^4 - 14x^2 + 1$$

Above terms can be written as,

$$x^4 + 2x^2 + 1 - 16x^2$$

We know that, $(a + b)^2 = a^2 + 2ab + b^2$,

So,
$$[(x^2)^2 + (2 \times x^2 \times 1) + 1^2] - 16x^2$$

$$(x^2 + 1)^2 - (4x)^2$$

We know that, $a^2 - b^2 = (a + b) (a - b)$

$$(x^2 + 1 + 4x) (x^2 + 1 - 4x)$$

18.

(i)
$$(x^2 - 5x + 7)(x^2 + 5x + 7)$$

Solution:-

$$(x^2 - 5x + 7)(x^2 + 5x + 7)$$

Rearranging the above terms, we get,

$$((x^2 + 7) - 5x) ((x^2 + 7) + 5x)$$

As, we know that, $a^2 - b^2 = (a + b) (a - b)$

So,
$$(x^2 + 7)^2 - (5x)^2$$

 $(x^2 + 7)^2 - 25x^2$

(ii)
$$(x^2 - 5x + 7)(x^2 - 5x - 7)$$

Solution:-

$$(x^2 - 5x + 7) (x^2 - 5x - 7)$$

$$[(x^2-5x)+7)((x^2-5x)-7)$$

As, we know that,
$$a^2 - b^2 = (a + b) (a - b)$$

$$(x^2 - 5x)^2 - 7^2$$

$$(x^2 - 5x)^2 - 49$$

(iii) $(x^2 + 5x - 7)(x^2 - 5x + 7)$

Solution:-

$$(x^2 + 5x - 7)(x^2 - 5x + 7)$$

$$[x^2 + (5x - 7)][x^2 - (5x - 7)]$$

As, we know that,
$$a^2 - b^2 = (a + b) (a - b)$$

$$x^2 - (5x - 7)^2$$

We know that,
$$(a - b)^2 = a^2 - 2ab + b^2$$
,

$$X^2 - [(5x)^2 - (2 \times 5x \times 7) + 7^2]$$

$$X^2 - (25x^2 - 70x + 49)$$

$$X^2 - 25x^2 + 70x - 49$$

$$-24x^2 + 70x - 49$$

19.

(i)
$$x - 1/x = 5/6$$

Solution:-

$$x - 1/x = 5/6$$

Now, squaring on both side we get,

$$X^2 + (1/x^2) - 2 = 25/36$$

Transposing – 2 from LHS to RHS then it becomes 2.

$$x^2 + (1/x^2) = (25/36) + 2$$

$$x^2 + (1/x^2) = (25 + 72)/36$$

$$x^2 + 1/x^2 = 97/36$$

(ii)
$$(x + 1/x)^2 = (x^2 + (1/x^2) + 2)$$

$$(x + 1/x)^2 = (x^2 + (1/x^2) + 2)$$

From (i),
$$x^2 + 1/x^2 = 97/36$$

So, $(x + 1/x)^2 = (97/36) + 2$
 $(x + 1/x)^2 = (97 + 72)/36$
 $(x + 1/x)^2 = 169/36$
 $x + (1/x) = \sqrt{(169/36)}$
 $x + (1/x) = 13/6$

(iii) $(x + 1/x)^3 = x^3 + (1/x^3) + 3(x + (1/x))$

Solution:-

$$(x + 1/x)^3 = x^3 + (1/x^3) + 3(x + (1/x))$$

From (ii), $x + (1/x) = 13/6$
 $(13/6)^3 = x^3 + (1/x^3) + 3(13/6)$
 $2197/216 = x^3 + (1/x^3) + 39/6$
 $x^3 + (1/x^3) = (2197/216) - (39/6)$
 $x^3 + (1/x^3) = (2197 - 1404)/216$
 $x^3 + (1/x^3) = 793/216$

(iv) $x^4 - 1/x^4$

Solution:-

$$x^{4} - 1/x^{4} = (x^{2} + 1/x^{2}) (x^{2} - 1/x^{2})$$

$$= (x^{2} + 1/x^{2}) (x + 1/x) (x - 1/x)$$

From (i), (ii) and (iii) substitute the values we get,, = $(97/36) \times (13/6) \times (5/6)$ = 6305/1296

20. If $x + 1/x = \sqrt{3}$, find the values of

(i)
$$x^3 + 1/x^3$$

Solution:-

From question,
$$x + 1/x = \sqrt{3}$$

$$x + 1/x = \sqrt{3}$$

Cubing on both LHS and RHS we get,

$$(x + 1/x)^3 = (\sqrt{3})^3$$

$$X^3 + (1/x^3) + 3(x + (1/x)) = 3\sqrt{3}$$

$$x^3 + 1/x^3 + 3(\sqrt{3}) = 3\sqrt{3}$$

By transposing we get,

$$x^3 + 1/x^3 + 3\sqrt{3} - 3\sqrt{3} = 0$$

$$x^3 + 1/x^3 = 0$$

(ii)
$$x^6 - 1/x^6$$

Solution:-
 $x^6 - 1/x^6$
Above terms can be written as,
 $= (x^3)^2 - (1/x^3)^2$
We know that, $(a - b)^2 = a^2 - 2ab + b^2$,
 $(x^3 + (1/x^3))(x^3 - (1/x^3))$
From (i) $x^3 + 1/x^3 = 0$
So, $0 \times (x^3 - 1/x^3)$

EXERCISE 4.4

1.

(i)
$$x^2 + 5x + 6$$

Solution:-

$$x^2 + 5x + 6$$

$$x^2 + 3x + 2x + 6$$

Take out common in all terms we get,

$$x(x + 3) + 2(x + 3)$$

$$(x + 3) (x + 2)$$

(ii) $x^2 - 8x + 7$

Solution:-

$$x^2 - 8x + 7$$

$$x^2 - 7x - x + 7$$

Take out common in all terms we get,

$$x(x-7) - 1(x-7)$$

$$(x - 7) (x - 1)$$

2.

(i)
$$x^2 + 6x - 7$$

Solution:-

$$x^2 + 6x - 7$$

$$x^2 + 7x - x - 7$$

Take out common in all terms we get,

$$x(x + 7) - 1(x + 7)$$

$$(x + 7) (x - 1)$$

(ii) $y^2 + 7y - 18$

Solution:-

$$y^2 + 7y - 18$$

$$y^2 + 9y - 2y - 18$$

Take out common in all terms we get,

$$y(y + 9) - 2(y + 9)$$

$$(y + 9) (y - 2)$$

(i)
$$y^2 - 7y - 18$$

Solution:-

$$y^2 - 7y - 18$$

$$y^2 + 2y - 9y - 18$$

Take out common in all terms we get,

$$y(y + 2) - 9(y + 2)$$

$$(y + 2) (y - 9)$$

(ii)
$$a^2 - 3a - 54$$

Solution:-

$$a^2 - 3a - 54$$

$$a^2 + 6a - 9a - 54$$

Take out common in all terms we get,

$$a(a + 6) - 9(a + 6)$$

So,
$$(a + 6) (a - 9)$$

4.

(i)
$$2x^2 - 7x + 6$$

Solution:-

$$2x^2 - 7x + 6$$

$$2x^2 - 4x - 3x + 6$$

Take out common in all terms we get,

$$2x(x-2) - 3(x-2)$$

$$(x - 2) (2x - 3)$$

 $2 \times 6 = 12$

(ii)
$$6x^2 + 13x - 5$$

Solution:-

$$6x^2 + 13x - 5$$

$$6x^2 + 15x - 2x - 5$$

Take out common in all terms we get,

$$3x(2x + 5) - 1(2x + 5)$$

$$(2x + 5) (3x - 1)$$

 $6 \times 10 = 60$

+15

5.

(i)
$$6x^2 + 11x - 10$$

Solution:-

$$6x^2 + 11x - 10$$

$$6x^2 + 15x - 4x - 10$$

Take out common in all terms we get,

$$3x(2x + 5) - 2(2x + 5)$$

$$(2x + 5)(3x - 2)$$

Solution:-

$$6x^2 - 7x - 3$$

$$6x^2 - 9x + 2x - 3$$

Take out common in all terms we get,

$$3x(2x - 3) + 1(2x - 3)$$

$$(2x - 3)(3x + 1)$$

6.

(i)
$$2x^2 - x - 6$$

Solution:-

$$2x^2 - x - 6$$

$$2x^2 - 4x + 3x - 6$$

Take out common in all terms we get,

$$2x(x-2) + 3(x-2)$$

$$(x-2)(2x+3)$$

(ii)
$$1 - 18y - 63y^2$$

Solution:-

$$1 - 18y - 63y^2$$

$$1 - 21y + 3y - 63y^2$$

Take out common in all terms we get,

$$1(1-21y) + 3y(1-21y)$$

$$(1-21y)(1+3y)$$

7.

(i)
$$2y^2 + y - 45$$

Solution:-

$$2y^2 + y - 45$$

$$2y^2 + 10y - 9y - 45$$

Take out common in all terms we get,

$$2y(y + 5) - 9(y + 5)$$

$$(y + 5) (2y - 9)$$

(ii) $5 - 4x - 12x^2$

Solution:-

$$5 - 4x - 12x^2$$

$$5 - 10x + 6x - 12x^2$$

Take out common in all terms we get,

$$5(1-2x) + 6x(1-2x)$$

$$(1-2x)(5+6x)$$

8.

(i)
$$x(12x + 7) - 10$$

Solution:-

$$x(12x + 7) - 10$$

Above terms can be written as,

$$12x^2 + 7x - 10$$

$$12x^2 + 15x - 8x - 10$$

Take out common in all terms we get,

$$3x(4x + 5) - 2(4x + 5)$$

$$(4x + 5) (3x - 2)$$

(ii) $(4 - x)^2 - 2x$

Solution:-

$$(4 - x)^2 - 2x$$

We know that, $(a - b)^2 = a^2 - 2ab + b^2$

So,
$$(4^2 - (2 \times 4 \times x) + x^2) - 2x$$

$$16 - 8x + x^2 - 2x$$

$$x^2 - 10x + 16$$

$$x^2 - 8x - 2x + 16$$

Take out common in all terms we get,

$$x(x - 8) - 2(x - 8)$$

$$(x - 8) (x - 2)$$

(i)
$$60x^2 - 70x - 30$$

Solution:-

$$60x^2 - 70x - 30$$

Take out common in all terms we get,

$$10(6x^2 - 7x - 3)$$

$$10(6x^2 - 9x + 2x - 3)$$

Again, take out common in all terms we get,

$$10(3x(2x-3)+1(2x-3))$$

$$10(2x - 3)(3x + 1)$$

(ii)
$$x^2 - 6xy - 7y^2$$

Solution:-

$$x^2 - 6xy - 7y^2$$

$$x^2 - 7xy + xy - 7y^2$$

Take out common in all terms we get,

$$x(x-7y) + y(x-7y)$$

$$(x - 7y) (x + y)$$

10.

(i)
$$2x^2 + 13xy - 24y^2$$

Solution:-

$$2x^2 + 13xy - 24y^2$$

$$2x^2 + 16xy - 3xy - 24y^2$$

Take out common in all terms we get,

$$2x(x + 8y) - 3y(x + 8y)$$

$$(x + 8y) (2x - 3y)$$

(ii)
$$6x^2 - 5xy - 6y^2$$

Solution:-

$$6x^2 - 5xy - 6y^2$$

$$6x^2 - 9xy + 4xy - 6y^2$$

Take out common in all terms we get,

$$3x(2x - 3y) + 2y(2x - 3y)$$

$$(2x - 3y) (3x + 2y)$$

(i)
$$5x^2 + 17xy - 12y^2$$

Solution:-

$$5x^2 + 17xy - 12y^2$$

$$5x^2 + 20xy - 3xy - 12y^2$$

Take out common in all terms we get,

$$5x(x + 4y) - 3y(x + 4y)$$

$$(x + 4y) (5x - 3y)$$

(ii) $x^2y^2 - 8xy - 48$

Solution:-

$$x^2y^2 - 8xy - 48$$

$$x^2y^2 - 12xy + 4xy - 48$$

Take out common in all terms we get,

$$xy(xy - 12) + 4(xy - 12)$$

$$(xy - 12)(xy + 4)$$

12.

(i) $2a^2b^2 - 7ab - 30$

Solution:-

$$2a^2b^2 - 7ab - 30$$

$$2a^2b^2 - 12ab + 5ab - 30$$

Take out common in all terms we get,

$$(ab - 6) (2ab + 5)$$

(ii) $a(2a - b) - b^2$

Solution:-

$$a(2a - b) - b^2$$

Above terms can be written as,

$$2a^2 - ab - b^2$$

$$2a^2 - 2ab + ab - b^2$$

Take out common in all terms we get,

$$2a(a - b) + b(a - b)$$

$$(a - b) (2a + b)$$

13.

(i)
$$(x - y)^2 - 6(x - y) + 5$$

Solution:-

$$(x - y)^2 - 6(x - y) + 5$$

Above terms can be written as,

$$(x-y)^2 - 5(x-y) - (x-y) + 5$$

$$(x - y) (x - y - 5) - 1(x - y - 5)$$

Then,

$$(x - y - 5) (x - y - 1)$$

(ii) $(2x - y)^2 - 11(2x - y) + 28$

Solution:-

$$(2x - y)^2 - 11(2x - y) + 28$$

Above terms can be written as,

$$(2x - y)^2 - 7(2x - y) - 4(2x - y) + 28$$

$$(2x - y) (2x - y - 7) - 4(2x - y - 7)$$

$$(2x - y - 7)(2x - y - 4)$$

14.

(i)
$$4(a-1)^2 - 4(a-1) - 3$$

Solution:-

$$4(a-1)^2-4(a-1)-3$$

Above terms can be written as,

$$4(a-1)^2-6(a-1)+2(a-1)-3$$

Take out common in all terms we get,

$$(2(a-1)-3)(2(a-1)+1)$$

$$(2a - 2 - 3)(2a - 2 + 1)$$

(ii) $1 - 2a - 2b - 3(a + b)^2$

Solution:-

$$1 - 2a - 2b - 3(a + b)^2$$

Above terms can be written as,

$$1 - 2(a + b) - 3(a + b)^2$$

$$1 - 3(a + b) + (a + b) - 3(a + b)^2$$

Take out common in all terms we get,

$$1(1-3(a+b)) + (a+b)(1-(a+b))$$

$$(1-3(a+b))(1+(a+b))$$

 $(1-3a+3b)(1+a+b)$

(i)
$$3 - 5a - 5b - 12(a + b)^2$$

Solution:-

$$3 - 5a - 5b - 12(a + b)^2$$

Above terms can be written as,

$$3-5(a+b)-12(a+b)^2$$

$$3 - 9(a + b) + 4(a + b) - 12(a + b)^2$$

Take out common in all terms we get,

$$3(1-3(a+b)) + 4(a+b) (1-3(a+b))$$

$$(1-3(a+b))(3+4(a+b))$$

$$(1 - 3a - 3b)(3 + 4a + 4b)$$

(ii)
$$a^4 - 11a^2 + 10$$

Solution:-

$$a^4 - 11a^2 + 10$$

Above terms can be written as,

$$a^4 - 10a^2 - a^2 + 10$$

Take out common in all terms we get,

$$a^2 (a^2 - 10) - 1(a^2 - 10)$$

$$(a^2 - 10) (a^2 - 1)$$

16.

(i)
$$(x + 4)^2 - 5xy - 20y - 6y^2$$

Solution:-

$$(x + 4)^2 - 5xy - 20y - 6y^2$$

Above terms can be written as,

$$(x + 4)^2 - 5y(x + 4) - 6y^2$$

$$(x + 4)^2 - 6y(x + 4) + y(x + 4) - 6y^2$$

Take out common in all terms we get,

$$(x + 4) (x + 4 - 6y) + y(x + 4 - 6y)$$

$$(x-6y+4)(x+4+y)$$

(ii)
$$(x^2 - 2x^2) - 23(x^2 - 2x) + 120$$

$$(x^2-2x^2)-23(x^2-2x)+120$$

Above terms can be written as,

$$(x^2-2x)^2-15(x^2-2x)-8(x^2-2x)+120$$

Take out common in all terms we get,

$$(x^2-2x)(x^2-2x-15)-8(x^2-2x-15)$$

$$(x^2 - 2x - 15) (x^2 - 2x - 8)$$

17. $4(2a - 3)^2 - 3(2a - 3)(a - 1) - 7(a - 1)^2$

Solution:-

$$4(2a-3)^2-3(2a-3)(a-1)-7(a-1)^2$$

Let us assume, 2a - 3 = p and a - 1 = q

So,
$$4p^2 - 3pq - 7q^2$$

Then,
$$4p^2 - 7pq + 4pq - 7q^2$$

Take out common in all terms we get,

$$P(4p - 7q) + q(4p - 7q)$$

$$(4p - 7q) (p + q)$$

Now, substitute the value of p and q we get,

$$(4(2a-3)-7(a-1))(2a-3+a-1)$$

$$(8a - 12 - 7a + 7)(3a - 4)$$

18. $(2x^2 + 5x) (2x^2 + 5x - 19) + 84$

Solution:-

$$(2x^2 + 5x)(2x^2 + 5x - 19) + 84$$

Let us assume, $2x^2 + 5x = p$

So,
$$(p) (p - 19) + 84$$

$$p^2 - 19p + 84$$

$$p^2 - 12p - 7p + 84$$

$$p(p - 12) - 7(p - 12)$$

Now, substitute the value of p we get,

$$(2x^2 + 5x - 12)(2x^2 + 5x - 7)$$

EXERCISE 4.5

1.

(i)
$$8x^3 + y^3$$

Solution:-

$$8x^3 + y^3$$

Above terms can be written as,

$$(2x)^3 + y^3$$

We know that, $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$

Where, a = 2x, b = y

Then,
$$(2x)^3 + y^3 = (2x + y) ((2x)^2 - (2x \times y) + y^2)$$

= $(2x + y) (4x^2 - 2xy + y^2)$

(ii) $64x^3 - 125y^3$

Solution:-

$$64x^3 - 125y^3$$

Above terms can be written as,

$$(4x)^3 - (5y)^3$$

We know that, $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$

Where, a = 4x, b = 5y

Then,
$$(4x)^3 - (5y)^3 = (4x - 5y) ((4x)^2 + (4x \times 5y) + 5y^2)$$

= $(4x - 5y) (16x^2 + 20xy + 25y^2)$

2.

(i)
$$64x^3 + 1$$

Solution:-

$$64x^3 + 1$$

Above terms can be written as,

$$(4x)^3 + 1^3$$

We know that, $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$

Where, a = 4x, b = 1

Then,
$$(4x)^3 + 1^3 = (4x + 1)((4x)^2 - (4x \times 1) + 1^2)$$

= $(4x + 1)(16x^2 - 4x + 1)$

(ii) $7a^3 + 56b^3$

$$7a^3 + 56b^3$$

Take out common in all terms we get,

$$7(a^3 + 8b^3)$$

Above terms can be written as,

$$7(a^3 + (2b)^3)$$

We know that, $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$

Where,
$$a = a$$
, $b = 2b$

Then,
$$7[(a)^3 + (2b)^3] = 7[(a + 2b) ((a)^2 - (a \times 2b) + (2b)^2)]$$

= $7(a + 2b) (a^2 - 2ab + 4b^2)$

3.

(i)
$$(x^6/343) + (343/x^6)$$

Solution:-

$$(x^6/343) + (343/x^6)$$

Above terms can be written as,

$$(x^2/7)^3 + (7/x^2)^3$$

We know that, $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$

Where,
$$a = (x^2/7)$$
, $b = (7/x^2)$

Then,
$$(x^2/7)^3 + (7/x^2)^3 = [(x^2/7) + (7/x^2)][(x^2/7)^2 - ((x^2/7) \times (7/x^2)) + (7/x^2)^2]$$

= $[(x^2/7) + (7/x^2)][(x^4/49) - 1 + (49/x^4)]$

(ii) $8x^3 - 1/27y^3$

Solution:-

$$8x^3 - 1/27y^3$$

Above terms can be written as,

$$(2x)^3 - (1/3y)^3$$

We know that,
$$a^3 - b^3 = (a - b) (a^2 + ab + b^2)$$

Where,
$$a = 2x$$
, $b = (1/3y)$

Then,
$$(2x)^3 - (1/3y)^3 = (2x - (1/3y))((2x)^2 + (2x \times (1/3y)) + (3y)^2)$$

= $(2x - (1/3y))(4x^2 + (2x/3y) + 9y^2)$

4.

(i)
$$x^2 + x^5$$

Solution:-

$$x^2 + x^5$$

Take out common in all terms we get,

$$x^2(1 + x^3)$$

$$x^2(1^3 + x^3)$$

We know that,
$$a^3 + b^3 = (a + b) (a^2 - ab + b^2)$$

Where, $a = 1$, $b = x$

$$= x^2 [(1 + x) (1^2 - (1 \times x) + x^2)]$$

$$= x^2 (1 + x) (1 - x + x^2)$$

(ii) $32x^4 - 500x$

Solution:-

$$32x^4 - 500x$$

Take out common in all terms we get,

$$4x(8x^3 - 125)$$

Above terms can be written as,

$$4x((2x)^3-5^3)$$

We know that, $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$

Where,
$$a = 2x$$
, $b = 5$

$$= 4x(2x - 5) ((2x)^2 + (2x \times 5) + 5^2)$$

$$= 4x(2x - 5) (4x^2 + 10x + 25)$$

5.

(i) $27x^3y^3 - 8$

Solution:-

$$27x^3y^3 - 8$$

Above terms can be written as,

$$(3xy)^3 - 2^3$$

We know that, $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$

Where,
$$a = 3xy$$
, $b = 2$

=
$$(3xy - 2) ((3xy)^2 + (3xy \times 2) + 2^2)$$

= $(3xy - 2) (9x^2y^2 + 6xy + 4)$

(ii)
$$27(x + y)^3 + 8(2x - y)^3$$

Solution:-

$$27(x + y)^3 + 8(2x - y)^3$$

Above terms can be written as,

$$3^3(x + y)^3 + 2^3(2x - y)^3$$

$$(3(x + y))^3 + (2(x - y))^3$$

We know that, $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$

Where,
$$a = 3(x + y)$$
, $b = 2(x - y)$

=
$$[3(x + y) + 2(2x - y)][(3(x + y))^3 - (3(x + y) \times 2(2x - y)) + (2(2x - y))^2]$$

=
$$[3x + 3y + 4x - 2y]$$
 $[9(x + y)^2 - 6(x + y)(2x - y) + 4(2x - y)^2]$
= $(7x - y)$ $[9(x^2 + y^2 + 2xy) - 6(2x^2 - xy + 2xy - y^2) + 4(4x^2 + y^2 - 4xy)]$
= $(7x - y)$ $[9x^2 + 9y^2 + 18xy - 12x^2 - 6xy - 6y^2 + 16x^2 + 4y^2 - 16xy]$
= $(7x - y)$ $[13x^2 - 4xy + 19y^2]$

(i)
$$a^3 + b^3 + a + b$$

Solution:-

$$a^3 + b^3 + a + b$$

 $(a^3 + b^3) + (a + b)$

We know that,
$$a^3 + b^3 = (a + b) (a^2 - ab + b^2)$$

$$[(a + b) (a^2 - ab + b^2)] + (a + b)$$

$$(a + b) (a^2 - ab + b^2 + 1)$$

(ii)
$$a^3 - b^3 - a + b$$

Solution:-

$$a^3 - b^3 - a + b$$

$$(a^3 - b^3) - (a - b)$$

We know that,
$$a^3 - b^3 = (a - b) (a^2 + ab + b^2)$$

$$[(a - b) (a^2 + ab + b^2)] - (a - b)$$

$$(a - b) (a^2 + ab + b^2 - 1)$$

7.

(i)
$$x^3 + x + 2$$

Solution:-

$$x^3 + x + 2$$

Above terms can be written as,

$$x^3 + x + 1 + 1$$

Rearranging the above terms, we get

$$(x^3 + 1)(x + 1)$$

$$(x^3 + 1^3)(x + 1)$$

We know that, $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$

$$[(x + 1) (x^2 - x + 1)] + (x + 1)$$

$$(x + 1) (x^2 - x + 1 + 1)$$

$$(x + 1) (x^2 - x + 2)$$

(ii)
$$a^3 - a - 120$$

Solution:-

$$a^3 - a - 120$$

Above terms can be written as,

$$a^3 - a - 125 + 5$$

Rearranging the above terms, we get

$$a^3 - 125 - a + 5$$

$$(a^3 - 125) - (a - 5)$$

$$(a^3 - 5^3) - (a - 5)$$

We know that, $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$

$$[(a-5)(a^2+5a+5^2)]-(a-5)$$

$$(a - 5) (a^2 + 5a + 25) - (a - 5)$$

$$(a - 5) (a^2 + 5a + 25 - 1)$$

$$(a - 5) (a^2 + 5a + 24)$$

8.

(i)
$$x^3 + 6x^2 + 12x + 16$$

Solution:-

$$x^3 + 6x^2 + 12x + 16$$

$$x^3 + 6x^2 + 12x + 8 + 8$$

Above terms can be written as,

$$(x^3 + (3 \times 2 \times x^2) + (3 \times 2^2 \times x) + 2^3) + 8$$

We know that, $(a + b)^3 = a^3 + b^3 + 3a^2b + 3ab^2$

Now
$$a = x$$
 and $b = 2$

So,
$$(x + 2)^3 + 2^3$$

We know that, $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$

$$(x + 2 + 2) ((x + 2)^2 - (2 \times (x + 2)) + 2^2)$$

$$(x + 4) (x^2 + 4 + 4x - 2x - 4 + 4)$$

$$(x + 4) (x^2 + 2x + 4)$$

(ii) $a^3 - 3a^2b + 3ab^2 - 2b^3$

Solution:-

$$a^3 - 3a^2b + 3ab^2 - 2b^3$$

Above terms can be written as,

$$a^3 - 3a^2b + 3ab^2 - b^3 - b^3$$

We know that, $(a - b)^3 = a^3 - b^3 - 3a^2b + 3ab^2$

So,
$$(a - b)^3 + b^3$$

We also know that, $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$ Where, a = a - b, b = b $(a - b - b) ((a - b)^2 + (a - b)b + b^2)$

$$(a - b - b) ((a - b)^2 + (a - b)b + b^2)$$

 $(a - 2b) (a^2 + b^2 - 2ab + ab - b^2 + b^2)$

$$(a - 2b) (a^2 + b^2 - ab)$$

9.

(i)
$$2a^3 + 16b^3 - 5a - 10b$$

Solution:-

$$2a^3 + 16b^3 - 5a - 10b$$

Above terms can be written as,

$$2(a^3 + 8b^3) - 5(a + 2b)$$

$$2(a^3 + (2b)^3) - 5(a + 2b)$$

We know that, $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$

$$2[(a + 2b) (a^2 - 2ab + 4b^2)] - 5(a + 2b)$$

$$(a + 2b) (2a^2 - 4ab + 8b^2 - 5)$$

(ii) $a^3 - (1/a^3) - 2a + 2/a$

Solution:-

$$a^3 - (1/a^3) - 2a + 2/a$$

$$(a^3 - (1/a)^3) - 2a + 2/a$$

We know that, $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$

$$[(a-1/a)-(a^2+(a\times 1/a)+(1/a)^2]-2(a-1/a)$$

$$(a - 1/a) (a^2 + 1 + 1/a^2) - 2(a - 1/a)$$

$$(a - 1/a) (a^2 + 1 + 1/a^2 - 2)$$

$$(a - 1/a) (a^2 + (1/a^2) - 1)$$

10.

(i)
$$a^6 - b^6$$

Solution:-

$$a^6 - b^6$$

Above terms can be written as,

$$(a^2)^3 - (b^2)^3$$

We know that, $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$

So,
$$a = a^2$$
, $b = b^2$

$$(a^2 - b^2) ((a^2)^2) + a^2b^2 + (b^2)^2$$

$$(a^2 - b^2) (a^4 + a^2b^2 + b^4)$$

(ii) $x^6 - 1$

Solution:-

$$x^6 - 1$$

Above terms can be written as,

$$(x^2)^3 - 1^3$$

We know that, $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$

So,
$$a = x^2$$
, $b = 1$

$$(x^2 - 1) ((x^2)^2 + (x^2 \times 1) + 1^2)$$

$$(x^2 - 1) (x^4 + x^2 + 1)$$

11.

(i) $64x^6 - 729y^6$

Solution:-

$$64x^6 - 729y^6$$

Above terms can be written as,

$$(2x)^6 - (3y)^6$$

$$[(2x)^2]^3 - [(3y)^2]^3$$

We know that, $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$

So,
$$a = (2x)^2$$
, $b = (3y)^2$

$$[(2x)^2 - (3y)^2][((2x)^2)^2 + ((2x)^2 \times (3y)^2) + ((3y)^2)^2]$$

$$(4x^2 - 9y^2) [16x^4 + (4x^2 \times 9y^2) + (9y^2)^2]$$

$$(4x^2 - 9y^2) [16x^4 + 36x^2y^2 + 81y^4]$$

$$[(2x)^2 - (3y)^2] [16x^4 + 36x^2y^2 + 81y^4]$$

$$(2x + 3y) (2x - 3y) (16x^4 + 36x^2y^2 + 81y^4)$$

(ii) $x^3 - (8/x)$

Solution:-

$$x^3 - (8/x)$$

Above terms can be written as,

$$(1/x)(x^3 - 8)$$

$$(1/x)[(x)^3-(2)^3]$$

We know that, $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$

So,
$$a = x$$
, $b = 2$

$$(1/x)(x-2)(x^2+2x+4)$$

12.

(i)
$$250 (a - b)^3 + 2$$

Solution:-

$$250 (a - b)^3 + 2$$

Take out common in all terms we get,

$$2(125(a - b)^3 + 1)$$

$$2[(5(a-b))^3+1^3]$$

We know that,
$$a^3 + b^3 = (a + b) (a^2 - ab + b^2)$$

= 2[(5a - 5b + 1) ((5a - 5b)² - (5a - 5b)1 + 1²)]
= 2(5a - 5b + 1) (25a² + 25b² - 50ab - 5a + 5b + 1)

(ii) $32a^2x^3 - 8b^2x^3 - 4a^2y^3 + b^2y^3$

Solution:-

$$32a^2x^3 - 8b^2x^3 - 4a^2y^3 + b^2y^3$$

Take out common in all terms we get,

$$8x^3(4a^2-b^2)-y^3(4a^2-b^2)$$

$$(4a^2 - b^2) (8x^3 - y^3)$$

Above terms can be written as,

$$((2a)^2 - b^2) ((2x)^3 - y^3)$$

We know that,
$$a^3 - b^3 = (a - b) (a^2 + ab + b^2)$$
 and $(a^2 - b^2) = (a + b) (a - b)$

$$(2a + b) (2a - b) [(2x - y) ((2x)^2 + 2xy + y^2)]$$

$$(2a + b) (2a - b) (2x - y) (4x^2 + 2xy + y^2)$$

13.

(i)
$$x^9 + y^9$$

Solution:-

$$x^9 + y^9$$

Above terms can be written as,

$$(x^3)^3 + (y^3)^3$$

We know that,
$$a^3 + b^3 = (a + b) (a^2 - ab + b^2)$$

Where,
$$a = x^3$$
, $b = y^3$

$$(x^3 + y^3) ((x^3)^2 - x^3y^3 + (y^3)^2)$$

$$(x^3 + y^3) (x^6 - x^3y^3 + y^6)$$

Then, $(x^3 + y^3)$ in the form of $(a^3 + b^3)$

$$(x + y)(x^2 - xy + y^2)(x^6 - x^3y^3 + y^6)$$

(ii) $x^6 - 7x^3 - 8$

Solution:-

$$X^6 - 7x^3 - 8$$

Above terms can be written as,

$$(x^2)^3 - 7x^3 - x^3 + x^3 - 8$$

$$(x^2)^3 - 8x^3 + x^3 - 2^3$$

$$(((x^2)^3) - (2x)^3) + (x^3 - 2^3)$$

We know that, $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$

$$(x^2-2x)((x^2)^2+(x^2\times 2x)+(2x)^2)+(x-2)(x^2+2x+2^2)$$

$$(x^2-2x)(x^4+2x^3+4x^2)+(x-2)(x^2+2x+4)$$

$$x(x-2) x^2(x^2 + 2x + 4) + (x-2) (x^2 + 2x + 4)$$

Take out common in all terms we get,

$$(x-2)(x^2+2x+4)((x\times x^2)+1)$$

$$(x-2)(x^2+2x+4)(x^3+1)$$

So, above terms are in the form of $a^3 + b^3$

Therefore, $(x - 2)(x^2 + 2x + 4)(x + 1)(x^2 - x + 1)$

CHAPTER TEST

1.

(i)
$$15(2x - 3)^3 - 10(2x - 3)$$

Solution:-

$$15(2x-3)^3-10(2x-3)$$

Take out common in both terms,

Then, $5(2x-3)[3(2x-3)^2-2]$

(ii) a(b - c) (b + c) - d(c - b)

Solution:-

$$a(b - c) (b + c) - d(c - b)$$

Above terms can be written as,

$$a(b - c) (b + c) + d(b - c)$$

Take out common in both terms,

$$(b - c) [a(b + c) + d]$$

$$(b - c) (ab + ac + d)$$

2.

(i)
$$2a^2x - bx + 2a^2 - b$$

Solution:-

$$2a^2x - bx + 2a^2 - b$$

Rearrange the above terms we get,

$$2a^2x + 2a - bx - b$$

Take out common in both terms,

$$2a^{2}(x + 1) - b(x + 1)$$

$$(x + 1) (2a^2 - b)$$

(ii)
$$p^2 - (a + 2b)p + 2ab$$

Solution:-

$$p^2 - (a + 2b)p + 2ab$$

Above terms can be written as,

$$p^2 - ap - 2bp + 2ab$$

Take out common in both terms,

$$p(p - a) - 2b(p - a)$$

$$(p-a)(p-2b)$$

3.

(i)
$$(x^2 - y^2)z + (y^2 - z^2)x$$

Solution:-

$$(x^2 - y^2)z + (y^2 - z^2)x$$

Above terms can be written as,

$$zx^2 - zy^2 + xy^2 - xz^2$$

Rearrange the above terms we get,

$$zx^2 - xz^2 + xy^2 - zy^2$$

Take out common in both terms,

$$zx(x-z) + y^2(x-z)$$

$$(x - z) (zx + y^2)$$

(ii)
$$5a^4 - 5a^3 + 30a^2 - 30a$$

Solution:-

$$5a^4 - 5a^3 + 30a^2 - 30a$$

Take out common in both terms,

$$5a(a^3 - a^2 + 6a - 6)$$

$$5a[a^2(a-1)+6(a-1)]$$

$$5a(a - 1) (a^2 + 6)$$

4.

(i)
$$b(c-d)^2 + a(d-c) + 3c - 3d$$

Solution:-

$$b(c-d)^2 + a(d-c) + 3c - 3d$$

Above terms can be written as,

$$b(c - d)^2 - a(c - d) + 3c - 3d$$

$$b(c - d)^2 - a(c - d) + 3(c - d)$$

Take out common in both terms,

$$(c - d) [b(c - d) - a + 3]$$

$$(c - d) (bc - bd - a + 3)$$

(ii)
$$x^3 - x^2 - xy + x + y - 1$$

Solution:-

$$x^3 - x^2 - xy + x + y - 1$$

Rearrange the above terms we get,

$$x^3 - x^2 - xy + y + x - 1$$

Take out common in both terms,

$$x^{2}(x-1) - y(x-1) + 1(x-1)$$

(x-1) (x²-y+1)

5.

(i)
$$x(x + z) - y(y + z)$$

Solution:-

$$x(x+z)-y(y+z)$$

$$x^2 + xz - y^2 - yz$$

Rearrange the above terms we get,

$$x^2 - y^2 + xz - yz$$

We know that, $(a^2 - b^2) = (a + b) (a - b)$

So,
$$(x + y) (x - y) + z(x - y)$$

$$(x - y) (x + y + z)$$

(ii) $a^{12}x^4 - a^4x^{12}$

Solution:-

$$a^{12}x^4 - a^4x^{12}$$

Take out common in both terms,

$$a^4x^4$$
 ($a^8 - x^8$)

$$a^4x^4((a^4)^2-(x^4)^2)$$

We know that, $(a^2 - b^2) = (a + b) (a - b)$

$$a^4x^4 (a^4 + x^4) (a^4 - x^4)$$

$$a^4x^4 (a^4 + x^4) ((a^2)^2 - (x^2)^2)$$

$$a^4x^4(a^4 + x^4) (a^2 + x^2) (a^2 - x^2)$$

$$a^4x^4 (a^4 + x^4) (a^2 + x^2) (a + x) (a - x)$$

6.

(i)
$$9x^2 + 12x + 4 - 16y^2$$

Solution:-

$$9x^2 + 12x + 4 - 16y^2$$

Above terms can be written as,

$$(3x)^2 + (2 \times 3x \times 2) + 2^2 - 16y^2$$

Then,
$$(3x + 2)^2 + (4y)^2$$

$$(3x + 2 + 4y) (3x + 2 - 4y)$$

(ii) $x^4 + 3x^2 + 4$

Solution:-

$$x^4 + 3x^2 + 4$$

Above terms can be written as,

$$(x^2)^2 + 3(x^2) + 4$$

$$(x^2)^2 + (2)^2 + 4x^2 - x^2$$

$$(x^2 + 2)^2 - (x^2)$$

We know that, $(a^2 - b^2) = (a + b) (a - b)$

$$(x^2 + 2 + x) (x^2 + 2 - x)$$

$$(x^2 + x + 2) (x^2 - x + 2)$$

7.

(i) $21x^2 - 59xy + 40y^2$

Solution:-

$$21x^2 - 59xy + 40y^2$$

By multiplying the first and last term we get, $21 \times 40 = 840$

Then,
$$(-35) \times (-24) = 840$$

So,
$$21x^2 - 35xy - 24xy + 40y^2$$

$$7x(3x - 5y) - 8y(3x - 5y)$$

$$(3x - 5y) (7x - 8y)$$

(ii) $4x^3y - 44x^2y + 112xy$

Solution:-

$$4x^3y - 44x^2y + 112xy$$

Take out common in all terms,

$$4xy(x^2 - 11x + 28)$$

Then,
$$4xy(x^2 - 7x - 4x + 28)$$

$$4xy[x(x-7)-4(x+7)]$$

8.

(i)
$$x^2y^2 - xy - 72$$

Solution:-

$$x^2v^2 - xv - 72$$

$$x^2y^2 - 9xy + 8xy - 72$$

Take out common in all terms,

$$xy(xy - 9) + 8(xy - 9)$$

$$(xy - 9) (xy + 8)$$

(ii) $9x^3y + 41x^2y^2 + 20xy^3$

Solution:-

$$9x^3y + 41x^2y^2 + 20xy^3$$

Take out common in all terms,

$$xy(9x^2 + 41xy + y^2)$$

Above terms can be written as,

$$xy (9x^2 + 36xy + 5xy + 20y^2)$$

$$xy [9x(x + 4y) + 5y(x + 4y)]$$

$$xy(x + 4y)(9x + 5y)$$

9.

(i)
$$(3a - 2b)^2 + 3(3a - 2b) - 10$$

Solution:-

$$(3a - 2b)^2 + 3(3a - 2b) - 10$$

Let us assume, (3a - 2b) = p

$$p^2 + 3p - 10$$

$$p^2 + 5p - 2p - 10$$

Take out common in all terms,

$$p(p + 5) - 2(p + 5)$$

$$(p + 5) (p - 2)$$

Now, substitute the value of p

$$(3a - 2b + 5)(3a - 2b - 2)$$

(ii) $(x^2 - 3x) (x^2 - 3x + 7) + 10$

Solution:-

$$(x^2 - 3x) (x^2 - 3x + 7) + 10$$

Let us assume, $(x^2 - 3x) = q$

$$q(q + 7) + 10$$

$$q^2 + 7q + 10$$

$$q^2 + 5q + 2q + 10$$

$$q(q + 5) + 2(q + 5)$$

$$(q + 5) (q + 2)$$

Now, substitute the value of q

$$(x^2 - 3x + 5) (x^2 - 3x + 2)$$

10.

(i) $(x^2 - x) (4x^2 - 4x - 5) - 6$

Solution:-

$$(x^2 - x) (4x^2 - 4x - 5) - 6$$

$$(x^2 - x) [(4x^2 - 4x) - 5] - 6$$

$$(x^2 - x) [4(x^2 - x) - 5] - 6$$

Let us assume $x^2 - x = q$

So,
$$q[4q - 5] - 6$$

$$4q^2 - 5q - 6$$

$$4q^2 - 8q + 3q - 6$$

$$4q(q-2) + 3(q-2)$$

$$(q - 2) (4q + 3)$$

Now, substitute the value of q

$$(x^2 - x - 2) (4(x^2 - x) + 3)$$

$$(x^2 - x - 2) (4x^2 - 4x + 3)$$

$$(x^2 - 2x + x - 2) (4x^2 - 4x + 3)$$

$$[x(x-2) + 1(x-2)] (4x^2 - 4x + 3)$$

$$(x-2)(x+1)(4x^2-4x+3)$$

(ii) $x^4 + 9x^2y^2 + 81y^4$

Solution:-

$$x^4 + 9x^2y^2 + 81y^4$$

Above terms can be written as,

$$x^4 + 18x^2y^2 + 81y^4 - 9x^2y^2$$

$$((x^2)^2 + (2 \times x^2 \times 9y^2) + (9y^2)^2) - 9x^2y^2$$

We know that, $(a + b)^2 = a^2 + 2ab + b^2$

$$(x^2 + 9y^2)^2 - (3xy)^2$$

$$(x^2 + 9y^2 + 3xy) (x^2 + 9y^2 - 3xy)$$

11.

(i) $(8/27)x^3 - (1/8)y^3$

Solution:-

$$(8/27)x^3 - (1/8)y^3$$

Above terms can be written as,

$$((2/3)x)^3 - (\frac{1}{2}y)^3$$

We know that, $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$

$$((2/3)x - \frac{1}{2}y)[(2/3)x + (2/3)x(1/2)y + ((1/2)y)^2]$$

$$((2/3)x - (1/2)y)[(4/9)x^2 + (xy/3) + (y^2/4)]$$

(ii)
$$x^6 + 63x^3 - 64$$

Solution:-

$$x^6 + 63x^3 - 64$$

Above terms can be written as,

$$x^6 + 64x^3 - x^3 - 64$$

Take out common in all terms,

$$x^3(x^3+64)-1(x^3+64)$$

$$(x^3 + 64)(x^3 - 1)$$

$$(x^3 + 4^3) (x^3 - 1^3)$$

We know that, $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$ and $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$

So,
$$(x + 4) [x^2 - 4x + 4^2] (x - 1) [x^2 + x + 1^2]$$

$$(x + 4) (x^2 - 4x + 16) (x - 1) (x^2 + x + 1)$$

12.

(i)
$$x^3 + x^2 - (1/x^2) + (1/x^3)$$

Solution:-

$$x^3 + x^2 - (1/x^2) + (1/x^3)$$

Rearranging the above terms, we get,

$$x^3 + (1/x^3) + x^2 - (1/x^2)$$

We know that, $a^3 - b^3 = (a - b) (a^2 + ab + b^2)$ and $(a^2 - b^2) = (a + b) (a - b)$

$$(x + 1/x) (x^2 - 1 + 1/x^2) + (x + 1/x) (x - 1/x)$$

$$(x + 1/x) [x^2 - 1 + 1/x^2 + x - 1/x]$$

(ii) $(x + 1)^6 - (x - 1)^6$

Solution:-

$$(x + 1)^6 - (x - 1)^6$$

Above terms can be written as,

$$((x+1)^3)^2 - ((x-1)^3)^2$$

We know that, $(a^2 - b^2) = (a + b) (a - b)$

$$[(x + 1)^3 + (x - 1)^3][(x + 1)^3 - (x - 1)^3]$$

$$[(x + 1) + (x - 1)][(x + 1)^2 - (x - 1) (x + 1) + (x - 1)^2][(x + 1) - (x - 1)][(x + 1)^2 + (x - 1) (x + 1) + (x - 1)^2]$$

$$(x + 1 + x - 1) [x^2 + 2x + 1 - x^2 + 1 + x^2 + 1 - 2x(x + 1) - x + 1] [x^2 + 2x + 1 + x^2 - 1 + x^2 - 2x + 1]$$

By simplifying we get,

$$2x(x^2 + 3) 2(3x^2 + 1)$$

$$4x(x^2 + 3)(3x^2 + 1)$$

13. Show that $(97)^3 + (14)^3$ is divisible by 111

Solution:-

From the question,

$$(97)^3 + (14)^3$$

We know that, $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$

So,
$$(97 + 14)[(97)^2 - (97 \times 14) + (14)^2]$$

$$111[(97)^2 - (97 \times 14) + (14)^2]$$

Therefore, it is clear that the given expression is divisible by 111.

14. $a^4 + a^2b^2 + b^4$

Solution:-

$$a^4 + a^2b^2 + b^4$$

Above terms can be written as,

$$a^4 + 2a^2b^2 + b^4 - a^2b^2$$

$$(a^2)^2 + 2a^2b^2 + (b^2)^2 - (ab)^2$$

$$(a^2 + b^2)^2 - (ab)^2$$

$$(a^2 + b^2 + ab) (a^2 + b - ab)$$

$$a + b = 8$$
, $ab = 15$

So,
$$(a + b)^2 = 8^2$$

$$a^2 + 2ab + b^2 = 64$$

$$a^2 + 2(15) + b^2 = 64$$

$$a^2 + b^2 + 30 = 64$$

By transposing,

$$a^2 + b^2 = 64 - 30$$

$$a^2 + b^2 = 34$$

Then,
$$a^4 + a^2b^2 + b^4$$

$$= (a^2 + b^2 + ab) (a^2 + b^2 - ab)$$

$$= (34 + 15) (34 - 15)$$

$$= 49 \times 19$$