Higher Mathematics 2018

Time : 3 Hours] Class: 12th [M. M. : 100 **Instructions**: All questions are compulsory. (1) Read instructions carefully of the question paper and then (2) write answers of the questions. Question paper has two Sections - SECTION - "A" and (3) SECTION - "B" In the Section "A" Question Nos. 1 to 5 are Objective type. (4) Each question carries 5 marks. In the Section "B" Question Nos. 6 to 26 have internal option. (5) Question Nos. 6 to 10 carry 2 Marks Each. (6) Question Nos. 11 to 14 carry 3 Marks Each. (7) Question Nos. 15 to 21 carry 4 Marks Each. (8) Question Nos. 22 to 26 carry 5 Marks Each. (9) SECTION-"A" If $\frac{1}{(1+\sin x)(2+\sin x)} = \frac{a}{(1+\sin x)} \frac{b}{(2+\sin x)}$ then a + b = (A)Q.1 Choose the correct options (i) (A)0 (B) 1 (D) 3 (C)2 (ii) The domain of $\sin^{-1} X$ is : (A) $(-\pi, \pi)$ (B)[-1,1] (D) (-∞,∞) $(C)(0.2\pi)$ The distance of point (3, 4, 5) from XZ-plane is (iii) (A)4 **(B)**3 (C)5 (D)0 Two lines $\frac{x}{1} - \frac{y}{2} = \frac{z}{3}$ and $\frac{x}{5} - \frac{y}{10} - \frac{z}{15}$ are mutually (iv) (A) Perpendicular (B) Coincident (D) Parallel (C) Intersect The shortest distance of point (a, b, c) from X-axis is : (v) (A) $\sqrt{b^2 + c^2}$ (B) $\sqrt{a^2 + b^2}$ (C) $\sqrt{c^2 + a^2}$ (D) $\sqrt{a^2 + b^2 + c^2}$ $5 \times 1 = 5$ Write true/false in the following statements : Q2 Equation of plane parallel to Y-axis is ax + by + d = 0. (i) The value of \vec{a} . $(\vec{a} \times \vec{b})$ is zero. (ii)

I-236

(iii) The value of
$$\int \frac{dx}{\sin x}$$
 is $\log \tan \frac{x}{2} + c$.
(iv) The velocity of the particle at the maximum height is always zero.
(v) Work is a vector quantity.
Pill in the blanks : $5 \times 1 = 5$
(1) Simpson's Rule is based upon the Principle
(2) If $y = a^x then \frac{dy}{dx}$ is
(3) Differential coefficient of x^{-57} is
(4) The coefficient of correlation is the mean of the regression coefficient.
(5) The direction cosine of the vector $3i - 2j + 6k$ are
Q4 Give answers in one word/sentence : $5 \times 1 = 5$
(i) Write the Simpson's One-third Rule formula for $\int_a^b f(x) dx$.
(ii) In which interval does the root of equation $x^3 - x - 2 = 0$ lie?
(iii) Write the formula of Trapezoidal rule in numerical method.
(iv) Perfect Negative Correlation is
(v) Write Newton-Raphson's formula
Q5 Match the column : http://www.mpboardonlinc.com $5 \times 1 = 5$
(A') (B')
(a) $\int_{x^2-a^2} dx$ (i) $\frac{1}{2} \left[x \sqrt{x^2} + x^2 + a^2 \log \left(x + \sqrt{a^2} + x^2 \right) \right]$
(b) $\int_{a^2} \frac{1}{-x^2} dx$ (ii) $\log \left[x + \sqrt{x^2} + a^2 \right]$
(c) $\int \sqrt{x^2 + a^2} dx$ (iv) $\frac{1}{2} \left[x \sqrt{x^2} - a^2 - a^2 \log \left(x + \sqrt{x^2} - a^2 \right) \right]$
(e) $\int \sqrt{a^2 + x^2} dx$ (v) $\log \left[x + \sqrt{x^2} - a^2 \right]$
(v) $\frac{1}{2a} \log \frac{a + x}{a - x}$
SECTION-"B"
Q6 If $\vec{r} = 3\vec{i} - 4\vec{j} + 5\vec{k}$ then find the unit vector in the direction of \vec{r}

(Or)	Show that $\vec{a} - 2\vec{b} + 3\vec{c}$, $-2\vec{a} + 3\vec{b} - 4\vec{c}$ and $\vec{a} - 3\vec{b} + 5\vec{c}$		
Q.7	are coplanar. Prove that the sum of three vectors represented by the consecutive sides of triangle is zero vector. 2		
(Or)	If $\vec{a} = 3\vec{i} - \vec{j} - 4\vec{k}$, $\vec{b} = -2\vec{i} + 4\vec{j} - 3\vec{k}$, then find the magnitude		
	of vector $3\vec{a}-2\vec{b}$		
Q.8	Find the Vector Equation and Cartesian Equation of the sphere whose centre is (-1, 0, 1) and radius is 2. 2		
(Or)	Prove that vectors $2\vec{i}-3\vec{j}+5\vec{k}$ and $-2\vec{i}+2\vec{j}+2\vec{k}$ are mutually		
	perpendicular.		
Q.9	Evaluate: $\int \sqrt{1 + \cos x} dx$ 2		
(Or)	Evaluate: $\int_{x^2-6x+13}^{x^2-6x+13}$		
Q.10	Evaluate: $\int x \cdot \log x dx$. 2		
(Or)	Integrate with respect to x : $\int \frac{e^{\cos^{-1}x}}{\sqrt{1-x^2}}$		
Q.11	Find the angle between the line $\frac{x+1}{2} = \frac{y}{3} - \frac{z-3}{6}$ and the plane		
	3x + y + z = 7. 3		
(Or)	Obtain the equation of the-sphere described on the joining of the point $A(2, -3, 4)$ and $B(-5, 6, 7)$ as a diameter.		
Q.12	Find the centroid of the triangle whose vertices are $A(X_1, Y_1, Z_1)$,		
(Or)	B(X_2 , Y_2 , Z_2) and C(X_3 , Y_3 , Z_3). Prove that the distance between two parallel planes $2x - 2y + z + 3 = 0$		
	and $4x - 4y + 2z + 5 = 0$ is $\frac{1}{6}$.		
Q.13	Prove by vector method that $\cos(\alpha + \beta) = \cos\alpha \cdot \cos\beta - \sin\alpha \cdot \sin\beta \cdot 3$		
(Or)	Find the angle between the vectors $3\hat{i} + \hat{j} + 2\hat{k}$ and $2\hat{i} - 2\hat{j} + 4\hat{k}$.		
Q.14	If G is the centroid of any triangle then show that (prove that) $\overrightarrow{A} \rightarrow \overrightarrow{O} \overrightarrow{O} = \overrightarrow{O}$ GA+GB+GC = \overrightarrow{O}		

(Or)	If $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$, $\vec{b} = -\hat{i} + 3\hat{j} - \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} + \hat{k}$ then find			
	$\vec{a} \times (\vec{b} \times \vec{c})$.			
Q.15	Resolve $\frac{x^2 + 7x}{x^2 + 2x - 8}$ into Partial	fractions.	4	
(Or)	Resolve $\frac{2x+1}{(x-1)(x^2+1)}$ into Part	ial fractions.		
Q.16	Prove that : 4			
	$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{5} + \tan^{-1}\frac{1}{8} = \pi/4$			
(O r)	Prove that			
	$\frac{1}{2}\cos^{-1}\frac{1-x}{1+x} = \tan^{-1}\sqrt{x}$			
Q.17	Differentiate sinX by First Princip	ole.	4	
(Or)	Differentiate log $\frac{1+\cos x}{1-\cos x}$ with respect to x.			
Q.18	If y = a cos(log x) + b sin(log x) then prove that $x^2y_2 + xy_1 + y = 0$. 4			
(Or)	If $x^y = e^{y \cdot x}$, prove that $\frac{dy}{dx} - \frac{2 - \log x}{(1 - \log x)^2}$.			
Q.19	Verify Rolle's theorem for function $f(x) = x^2 - 1$ in the interval [-1, 1]. 4			
(Or)	A particle moves according to the law $S = 5e^{-1} \cos t$, find its (a) velocity and (b) acceleration when $t = \pi/2$			
Q 20	Prove that : Value of correlation coefficient ρ lies between -1 to +1.5			
(Or)	Find the coefficient of correlation from the following data:			
	x 2 3 5 7 3			
	y 15 17 4 5 4			
Q.21	An article costs Rs.70 at Gwalior, find the corresponding most appropriate value at Bhopal using the following data: 5			
		Gwalior	Bhopal	
	Mean Value	ക	67	
	Standard Deviation	2.5	3.5	

The correlation coefficient between the values of the two cities is 0.8

(Or) Two lines of regression are
$$x + 2y = 5$$
 and $2x + 3y = 8$, find :
(i) \overline{x} and \overline{y} (b) b_{yx} and b_{yy}
(c) ρ_{yy}
Q.22 Find the equation of the sphere passing through the points (1, 0, 0)
(0, 1, 0) and (0, 0, 1) and whose centre lies on the plane $3x - y + z = 2$.
5
(Or) Find the angle between the lines whose direction cosine are given by
the relation $2l + 2n - m = 0$ and $ml + mn + nl = 0$.
Q.23 Evaluate : $\frac{\sin X - \cos X}{X - \frac{\pi}{2}}$ 5
(Or) Prove that the function is discontinuous :
 $g(x) = \begin{vmatrix} 3x, x < 3\\ 3, x = 3\\ x^2, x > 3 \end{vmatrix}$
Q.24 Evaluate : $\int \frac{dx}{5 + 4\cos x}$. 5
(Or) Find the value of $\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$.
Q.25 Solve the differential equation $\frac{dy}{dx} = \frac{x^2 + 5xy + 4y^2}{x^2}$ 5
(Or) Solve the $(1 + X^2) \frac{dY}{dX} + 2XY - 4X^2 = 0$.
Q.26 Find the probability that a leap year selected at random will contain
53 Sundays. 5
(Or) A husband and his wife attended an interview for a post. Probabilith
of the husband being selected $\frac{1}{4}$. whereas that of the wife is $\frac{1}{6}$.
Find the probability that none of them will be selected.