Instructions:

(1) All questions are compulsory.
(2) Read instructions carefully of the question paper and then write answers of the questions.
(3) Question paper has two Sections - SECTION - "A" and SECTION-"B"
(4) In the Section "A" Question Nos. 1 to 5 are Objective type. Each question carries 5 marks.
(5) In theSection "B" Question Nos, 6 to 26 have internal option.
(6) Question Nos. 6 to 10 carry 2 Marks Each.
(7) Question Nos. 11 to 14 carry 3 Marks Each.
(8) Question Nos. 15 to 21 carry 4 Marks Each.
(9) Question Nos. 22 to 26 carry 5 Marks Each.

SECTION-"A"

Q. $1 \quad$ Choose the correct options
(i) If $(1+\sin x) \frac{1}{(2+\sin x)}=\frac{a}{(1+\sin x)}+\frac{b}{(2+\sin x)}$ then $a \div b=$
(A) 0
(B) 1
(C) 2
(D) 3
(ii) The domain of $\sin ^{-1} \mathrm{X}$ is :
(A) $(-\pi, \pi)$
(B) $[-1,1]$
(C) (0.2π)
(D) $(-\infty, \infty)$
(iii) The distance of point $(3,4,5)$ from XZ-plane is
(A) 4
(B) 3
(C) 5
(D) 0
(iv) Two lines $\frac{x}{1}-\frac{y}{2}=\frac{z}{3}$ and $\frac{x}{5}-\frac{y}{10}-\frac{z}{15}$ are mutually
(A) Perpendicular
(B) Coincident
(C) Intersect
(D) Parallel
(v) The shortest distance of point (a,b,c) from X -axis is :
(A) $\sqrt{b^{2}+c^{2}}$
(B) $\sqrt{a^{2}+b^{2}}$
(C) $\sqrt{ } c^{2}+a^{2}$
(D) $\sqrt{a^{2}}+b^{2}+c^{2}$
Q. 2 Write true/false in the following statements :
(i) Equation of plane parallel to Y -axis is $\mathrm{ax}+\mathrm{by}+\mathrm{d}=0$.
(ii) The value of $\vec{a} \cdot(\vec{a} \times \vec{b})$ is zero.
(iii) The value of $\int \frac{d x}{\sin x}$ is $\log \tan \frac{x}{2}+c$.
(iv) The velocity of the particle at the maximum height is always zero.
(v) Work is a vector quantity.

Q3 Fill in the blanks:
(1) Simpson's Rule is based upon the Principle
(2) If $y=a^{x}$ then $\frac{d y}{d x}$ is
(3) Differential coefficient of $x^{-5 n}$ is
(4) The coefficient of correlation is the mean of the regression coefficient.
(5) The direction cosine of the vector $3 \mathrm{i}-2 \mathrm{j}+6 \mathrm{k}$ are
Q. 4 Give answers in one word/sentence :

$$
5 \times 1=5
$$

(i) Write the Simpson's One-third Rule formula for $\int_{a}^{b} f(x) d x$.
(ii) In which interval does the root of equation $\mathrm{x}^{3}-\mathrm{x}-2=0$ lie?
(iii) Write the formula of Trapezoidal rule in numerical method.
(iv) Perfect Negative Correlation is
(v) Write Newton-Raphson's formula
Q.5 Match the column : hup://www.mpboardonlinc.com $5 \times 1=5$
(a) $\int \frac{1}{x^{2}-a^{2}} d x$
(i) $\frac{1}{2}\left[x \sqrt{a^{2}}+x^{2}+a^{2} \log \left(x+\sqrt{a^{2}}+x^{2}\right)\right]$
(b) $\int_{a^{2}-x^{2}}^{1} d x$
(ii) $\log \left[x+\sqrt{x^{2}}+a^{2}\right]$
(c) $\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x$
(iii) $\frac{1}{2 a} \log \frac{x-a}{x+a}$
(d) $\int \sqrt{x^{2}-a^{2}} d x$
(iv) $\frac{1}{2}\left[x \sqrt{\left.x^{2}-a^{2}-a^{2} \log \left(x+\sqrt{x^{2}}-a^{2}\right)\right]}\right.$
(e) $\int \sqrt{ } a^{2}+x^{2} d x$
(v) $\log \left[x+\sqrt{x^{2}}-a^{2}\right]$
(vi) $\frac{1}{2 a} \log \frac{a+x}{a-x}$

SECTION - "B"

Q. 6 If $\vec{r}=3 \vec{i}-4 \vec{j}+5 \vec{k}$ then find the unit vector in the direction of \vec{r}
(Or) Show that $\vec{a}-2 \vec{b}+3 \vec{c},-2 \vec{a}+3 \vec{b}-4 \vec{c}$ and $\vec{a}-3 \vec{b}+5 \vec{c}$ are coplanar.
Q. 7 Prove that the sum of three vectors represented by the consecutive sides of triangle is zero vector.
(Or) If $\vec{a}=3 \vec{i}-\vec{j}-4 \vec{k}, \vec{b}=-2 \vec{i}+4 \vec{j}-3 \vec{k}$, then find the magnitude of vector $3 \vec{a}-2 \vec{b}$
Q. 8 Find the Vector Equation and Cartesian Equation of the sphere whose centre is $(-1,0,1)$ and radius is 2 .
(Or) Prove that vectors $2 \vec{i}-3 \vec{j}+5 \vec{k}$ and $-2 \vec{i}+2 \vec{j}+2 \vec{k}$ are mutually perpendicular.
Q. 9

Evaluate: $\int \sqrt{ } 1+\cos x d x$.
(Or) Evaluate: $\int_{x^{2}-6 x+13} \cdot d x$
Q. 10 Evaluate: $\int x \cdot \log x d x$.
(Or) Integrate with respect to $x: \int \frac{e^{\cos ^{-1} x}}{\sqrt{1}-x^{2}}$
Q. 11 Find the angle between the line $\frac{x+1}{2}=\frac{y}{3}-\frac{z-3}{6}$ and the plane
$3 x+y+z=7$.
(Or) Obtain the equation of the-sphere described on the joining of the point $A(2,-3,4)$ and $B(-5,6,7)$ as a diameter.
Q. 12 Find the centroid of the triangle whose vertices are $A\left(X_{1}, Y_{1}, Z_{1}\right)$, $B\left(X_{2}, Y_{2}, Z_{2}\right)$ and $C\left(X_{3}, Y_{3}, Z_{3}\right)$.
(Or) Prove that the distance between two parallel planes $2 x-2 y+z+3=0$ and $4 x-4 y+2 z+5=0$ is $1 / 6$.
Q. 13 Prove by vector method that $\cos (\alpha+\beta)=\cos \alpha \cdot \cos \beta-\sin \alpha \cdot \sin \beta .3$
(Or) Find the angle between the vectors $3 \hat{i}+\hat{j}+2 \hat{k}$ and $2 \hat{i}-2 \hat{j}+4 \hat{k}$.
Q. 14 If G is the centroid of any triangle then show that (prove that)

$$
\overrightarrow{\mathrm{GA}}+\overrightarrow{\mathrm{GB}}+\overrightarrow{\mathrm{GC}}=\overrightarrow{0}
$$

If $\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}, \vec{b}=-\hat{i}+3 \hat{j}-\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}+\hat{k}$ then find

$$
\begin{equation*}
\vec{a} \times(\vec{b} \times \vec{c}) \tag{Or}
\end{equation*}
$$

Q. 15 Resolve $\frac{x^{2}+7 x}{x^{2}+2 x-8}$ into Partial fractions.

$$
2 x+1
$$

(Or) Resolve $(x-1)\left(x^{2}+1\right)$ into Partial fractions.
Q. 16 Prove that :

$$
\tan ^{-1} \frac{1}{2}+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{8}=\pi / 4
$$

(Or) Prove that

$$
\frac{1}{2} \cos ^{-1} \frac{1-x}{1+x}=\tan ^{-1} \sqrt{x}
$$

Q. 17 Differentiate $\sin X$ by First Principle.
(Or) Differentiate $\log \frac{\overline{1+\cos x}}{1-\cos x}$ with respect to. x.
Q. 18 If $y=a \cos (\log x)+b \sin (\log x)$ then prove that $x^{2} y_{2}+x y_{1}+y=0.4$
(Or) If $x^{y}=e^{y \cdot x}$, prove that

$$
\frac{d y}{d x}-\frac{2-\log x}{(1-\log x)^{2}} .
$$

Q. 19 Verify Rolle's theorem for function $f(x)=x^{2}-1$ in the interval $[-1,1] .4$
(Or) A particle moves according to the law $S=5 \mathrm{e}^{-1} \cos \mathrm{t}$, find its (a) velocity and (b) acceleration when $t=\pi / 2$

Q20 Prove that: Value of correlation coefficient ρ lies between -1 to +1.5
(Or) Find the coefficient of correlation from the following data :

$$
\begin{array}{llllll}
\mathrm{x} & 2 & 3 & 5 & 7 & 3 \\
\mathrm{y} & 15 & 17 & 4 & 5 & 4
\end{array}
$$

Q21 An article costs Rs. 70 at Gwalior, find the corresponding most appropriate value at Bhopal using the following data :

Gwalior
Mean Value
Standard Deviation
The correlation coefficient between the values of the two cities is 0.8
(Or) Two lines of regression are $x+2 y=5$ and $2 x+3 y=8$, find :
(i) \bar{x} and \bar{y}
(b) $b_{y x}$ and $b_{x y}$
(c) $\rho_{x y}$

Q22 Find the equation of the sphere passing through the points ($1,0,0$) $(0,1,0)$ and $(0,0,1)$ and whose centre lies on the plane $3 x-y+z=2$.
(Or) Find the angle between the lines whose direction cosine are given by the relation $2 \mathrm{l}+2 \mathrm{n}-\mathrm{m}=0$ and $\mathrm{ml}+\mathrm{mn} \div \mathrm{nl}=0$.

Evaluate: ${ }^{\lim _{x \rightarrow \pi / 4} \frac{\sin X-\cos X}{X-\frac{\pi}{2}}}$
(Or) Prove that the function is discontinuous:
$g(x)=\left\lvert\, \begin{array}{cc}3 x, & x<3 \\ 3, & x=3 \\ x^{2}, & x>3\end{array}\right.$
Q24 Evaluate: $\int 5+\frac{d x}{4 \cos x}$.
(Or) Find the value of $\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x$.
Q. 25 Solve the differential equation $\frac{d y}{d x}=\begin{gathered}x^{2}+5 x y+4 y^{2} \\ x^{2}\end{gathered}$
(Or) \quad Solve the $\left(1+X^{2}\right) \frac{d Y}{d X}+2 X Y-4 X^{2}=0$.
Q26 Find the probability that a leap year selected at random will contain 53 Sundays.
(Or) A husband and his wife attended an interview for a post. Probabilith of the husband being selected $\frac{1}{4}$. whereas that of the wife is $\frac{1}{6}$. Find the probability that none of them will be selected.

