

PSEB Class 10 Mathematics Question Paper 2016 Paper A with Solutions

Paper Code - 04/A PART - A

1. (i) Find the value of x in the pair of linear equations 3x - y = 4 and 2x + y = 6.

Solution:

Given, 3x - y = 4....(i) 2x + y = 6....(ii)Adding (i) and (ii), 3x - y + 2x + y = 4 + 6 5x = 10 x = 10/5x = 2

(ii) Write the first four terms of AP, when first term a = 4 and common difference d = 3.

Solution:

Given, First term = a = 4Common difference = d = 3Second term = a + d = 4 + 3 = 7Third term = a + 2d = 4 + 2(3) = 4 + 6 = 10Fourth term = a + 3d = 4 + 3(3) = 4 + 9 = 13Hence, the first four terms of the AP are 4, 7, 10, 13.

```
(iii) Fill in the blanks (?):
If \triangle ABC \sim \triangle DEF, then ar(\triangle ABC)/ar(\triangle DEF) = AC<sup>2</sup>/?
```

```
Solution: ar(\Delta ABC)/ar(\Delta DEF) = AC^2/DF^2
```

(iv) Evaluate: cosec 59° - sec 31°

Solution:

```
cosec 59^{\circ} - sec 31^{\circ}
= cosec (90^{\circ} - 31^{\circ}) - sec 31^{\circ}
= sec 31^{\circ} - sec 31^{\circ}
= 0
```

(v) The length, breadth and height of the hall is 14 m, 9 m, and 7 m respectively. Find the area of its floor.

Solution:

Given, Length = 1 = 14 m Breadth = b = 9 m Height = h = 7 m Area of the floor of hall = 2(1 + b)h= $2(14 + 9) \times 7$ = $2(23) \times 7$ = 46×7 = $322 m^2$

PART - B

2. Given that HCF(315, 657) = 9, find LCM(315, 657).

Solution:

Given, HCF(315, 657) = 9 We know that, LCM \times HCF = Product of the two given numbers LCM \times 9 = 315 \times 657 LCM = (315 \times 657)/9 = 22995 Therefore, LCM(315, 657) = 22995

3. Find a quadratic polynomial, the sum and product of whose zeroes is -3 and 2, respectively.

Solution:

Given, Sum of the zeroes = -3 Product of the zeroes = 2 Hence, the quadratic polynomial = x^2 - (sum of the zeroes)x + (product of the zeroes) = x^2 - (-3)x + 2 = x^2 + 3x + 2

4. Find the roots of quadratic equation $3x^2 - 5x - 2 = 0$, if they exist.

Solution:

Given, $3x^2 - 5x - 2 = 0$ Comparing with the standard form $ax^2 + bx + c = 0$, a = 3, b = -5 and c = -2Discriminant = $b^2 - 4ac$ $= (-5)^2 - 4(3)(-2)$ = 25 + 24 = 49 > 0Thus, the given quadratic equation has two real and distinct roots. $3x^2 - 5x - 2 = 0$ $3x^2 - 6x + x - 2 = 0$ 3x(x - 2) + 1(x - 2) = 0(3x + 1)(x - 2) = 0

 $x = -\frac{1}{3}$, x = 2Therefore, the roots of the given quadratic equation are $-\frac{1}{3}$ and 2.

OR

Find two consecutive odd positive integers, the sum of whose squares is 202.

Solution:

Let x and (x + 2) be the two consecutive odd positive integers. According to the given, $x^{2} + (x + 2)^{2} = 202$ $x^{2} + x^{2} + 4x + 4 = 202$ $2x^{2} + 4x + 4 = 202$ $2(x^{2} + 2x + 2) = 202$ $x^{2} + 2x + 2 = 101 = 0$ $x^{2} + 2x - 99 = 0$ $x^{2} + 11x - 9x - 99 = 0$ x(x + 11) - 9(x + 11) = 0 (x - 9)(x + 11) = 0 x = 9, -11The value of x cannot be negative. Now, x + 2 = 9 + 2 = 11Hence, the required numbers are 9 and 11.

5. Find the sum of the first 15 multiples of 8.

Solution:

The first 15 multiples of 8 are: 8, 16, 24, 32,...., 120 This is an AP with a = 8 and d = 8 n = 15 $a_n = 120$ Sum of first n terms $S_n = n/2(a + a_n)$ $S_{15} = (15/2) \times (8 + 120)$ $= (15/2) \times 128$ $= 15 \times 64$ = 960Hence, the sum of the first 15 multiples of 8 is 960.

OR

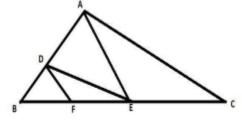
Find the 33rd term of AP whose 11th term is 38 and the 16th term is 73.

Solution:

Let a be the first term and d be the common difference of an AP. Given, $a_{11} = 38$ a + 10d = 38....(i)And

 $a_{16} = 73$ a + 15d = 73....(ii)Subtracting (i) from (ii), a + 15d - (a + 10d) = 73 - 385d = 35d = 35/5d = 7 Substituting d = 7 in (i), a + 10(7) = 38a = 38 - 70 a = -32 $a_{33} = a + 32d$ = -32 + 32(7)= -32 + 224= 192Hence, the 33rd term if the AP is 192.

6. In figure, if $DE \parallel AC$ and $DF \parallel AE$. Prove that BF/FE = BE/EC.



Solution: Given that in $\triangle ABC$, DE || AC By BPT, $\therefore BD/DA = BE/EC....(i)$ In $\triangle ABC$, DF || AE By BPT, $\therefore BD/DA = BF/FE....(ii)$ From (i) and (ii), BE/EC = BF/FE Hence proved.

OR

Let $\triangle ABC \sim \triangle DEF$ and their area be respectively 64 cm² and 121 cm². If EF = 13.2 cm, find BC.

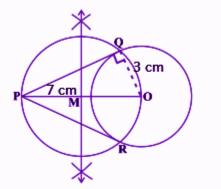
Solution:

Given, $\Delta ABC \sim \Delta DEF$ $ar(\Delta ABC) = 64 \text{ cm}^2$ $ar(\Delta DEF) = 121 \text{ cm}^2$ We know that the ratio of the areas of two similar triangles is equal to the squares of the ratio of their

corresponding sides. ar(ΔABC)/ ar(ΔDEF) = BC²/EF² 64/121 = BC²/(13.2)² \Rightarrow BC² = (64 × 13.2 × 13.2)/121 = 92.16 \Rightarrow BC = 9.6 cm

7. Draw a circle of radius 3 cm. From a point 7 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.

Solution:



PQ and PR are the required tangents to the circle. PQ = PR = 6.325 cm (approx)

8. A child has a die whose six faces show the letters as given below.

В	Α	В	С	E	D
	.1	XX 71 1	1 1 111	C (1)	D (III) D

The die is thrown once. What is the probability of getting (i) B (ii) E?

Solution:

Total number of outcomes = 6 i.e. {B, A, B, C, E, D} (i) Number of B's on die = 2 P(getting B) = 2/6 = 1/3(ii) Number of E's = 1 P(getting E) = 1/6

PART - C

9. The cost of 5 oranges and 3 apples is Rs. 35 and the cost of 2 oranges and 4 apples is Rs. 28. Find the cost of an orange and an apple.

Solution:

Let x be the cost (in Rs) of one orange and y be the cost (in Rs) of one apple. According to the given, 5x + 3y = 35...(i)2x + 4y = 282(x + 2y) = 28

2(x + 2y) = 28x + 2y = 14

x = 14 - 2y...(ii) Substituting (ii) in (i), 5(14 - 2y) + 3y = 3570 - 10y + 3y = 35 7y = 70 - 35 7y = 35 y = 35/7 = 5 Substituting y = 5 in (ii), x = 14 - 2(5) = 14 - 10 = 4 Hence, the cost of an orange is Rs. 4 and the cost of an apple is Rs. 5.

OR

Solve the pair of linear equations 5x + y = 2 and x - y = -2 graphically.

Solution:

Given, 5x + y = 2 x - y = -2Consider the first equation: 5x + y = 2y = -5x + 2

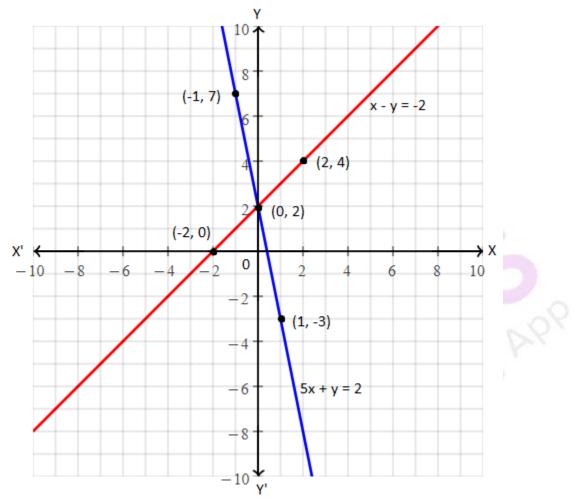
х	-1	0	1
у	7	2	-3

Now, consider another equation:

 $\begin{array}{l} x - y = -2 \\ y = x + 2 \end{array}$

x	-2	0	2
у	0	2	4

Graph:



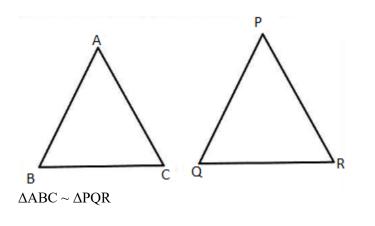
The lines representing the given pair of linear equations intersecting each other at (0, 2) Hence, the solution is x = 0 and y = 2.

10. If the areas of two similar triangles are equal, prove that they are congruent.

Solution:

Given,

 ΔABC and ΔPQR are two similar triangles and are equal in area.



:. $ar(\Delta ABC)/ar(\Delta PQR) = BC^2/QR^2$ $\Rightarrow BC^2/QR^2 = 1 \text{ [given } ar(\Delta ABC) = ar(\Delta PQR)$ $\Rightarrow BC^2 = QR^2$ $\Rightarrow BC = QR$ Similarly, AB = PQ and AC = PRBy SSS congruence criterion, $\Delta ABC \cong \Delta PQR$ Hence proved.

11. Find the area of the triangle ABC formed by the points A(-5, 7), B(-4, -5) and C(4, 5).

Solution:

Let the given points be: $A(-5, 7) = (x_1, y_1)$ $B(-4, -5) = (x_2, y_2)$ $C(4, 5) = (x_3, y_3)$ Area of triangle ABC = $\frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)]$ $= \frac{1}{2} [-5(-5 - 5) - 4(5 - 7) + 4(7 + 5)]$ $= \frac{1}{2} [-5(-10) - 4(-2) + 4(12)]$ $= \frac{1}{2} [50 + 8 + 48]$ = 106/2= 53 sq.units

12. Given cosec A = 17/15, calculate all other trigonometric ratios.

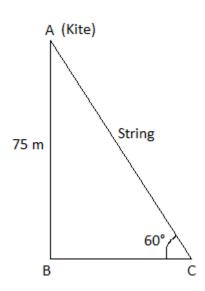
Solution:

Given. cosec A = 17/15 $\sin A = 1/\cos A = 15/17$ $\cos A = \sqrt{1 - \sin^2 A}$ $= \sqrt{[1 - (15/17)^2]}$ = \sqrt{1 - (225/289)]} = \[(289 - 225)/289] = √(64/289) = 8/17 $\cos A = 8/17$ $\tan A = \sin A / \cos A$ =(15/17)/(8/17)= 15/8 $\tan A = 15/8$ sec $A = 1/\cos A = 17/8$ $\cot A = 1/\tan A = 8/15$

13. A kite flying at a height of 75 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60° . Find the length of the string, assuming that there is no slack in the string.

Solution:

Let A be the position of kite and AC be the length of the string.



In right triangle ABC, $\sin 60^\circ = AB/AC$ $\sqrt{3}/2 = 60/AC$ $\Rightarrow AC = (2 \times 60)/\sqrt{3}$ $= 40\sqrt{3}$ m Hence, the length of the string is $40\sqrt{3}$ m.

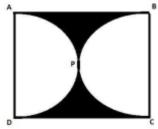
14. The length of the minute hand of a clock is 14 cm. Find the area swept by the minute hand in 15 minutes.

Solution:

Length of the minute hand = Radius of the sector = r = 14 cm Angle made by the minute hand in 60 minutes = 360° Angle made by the minute hand in 15 minutes = $(15/60) \ 360^{\circ} = 90^{\circ}$ Area of sector = $(\theta/360^{\circ}) \times \pi r^{2}$ Area swept by the minute hand in 15 minutes = $(90/360) \times \pi r^{2}$ = $(1/4) \times (22/7) \times 14 \times 14$ = 154 cm^{2}

OR

Find the area of the shaded region in figure, if ABCD is a square of side 14 cm and APD and BPC are two semicircles.



Solution: Given, Side of the square ABCD = 14 cm

Area of square ABCD = $(side)^2$ = $(14)^2$ = 196 cm² Side of the square = Diameter of semicircle = 14 cm Radius of semicircle = r = 14/2 = 7 cm Area of semicircle = $(\pi r^2)/2$ = $(1/2) \times (22/7) \times 7 \times 7$ = 77 cm² Area of the shaded region = Area of square - Area of two semicircles = 196 - 2×77 = 196 - 154 = 42 cm^2

15. The following table shows the ages of the patients admitted in a hospital during a year:

Age (in years)	5 - 15	15 - 25	25 - 35	35 - 45	45 - 55	55 - 65
Number of patients	6	11	21	23	14	5

Find the mode of the data given above.

Solution:

From the given,

Maximum frequency is 23 which lies in the class interval 35 - 45. Modal class = 35 - 45Lower limit of the modal class = 1 = 35Frequency of the modal class = $f_1 = 23$ Frequency of the class preceding the modal class = $f_0 = 21$ Frequency of the class succeeding the modal class = $f_2 = 14$ Class height = h = 10 Mode = $1 + [(f_1 - f_0)/(2f_1 - f_0 - f_2)] \times h$ = $23 + [(23 - 21)/(2 \times 23 - 21 - 14)] \times 10$ = $23 + [2/(46 - 35)] \times 10$ = 23 + (20/11)= 23 + 1.819= 24.819 Hence, the mode is 24.819.

OR

Consider the following	distribution	of daily wages	of 50 w	orkers in a	factory.

Daily wages (in Rs)	100 - 120	120 - 140	140 - 160	160 - 180	180 - 200
Number of workers	8	6	10	14	12

Find the mean daily wages of the workers of the factory.

Solution:

Daily wages (in Rs)	Number of workers (f _i)	Class marks (x _i)	x _i - 150	$u_i = (x_i - 150)/20$	$f_i u_i$
100 - 120	8	110	-40	-2	-16
120 - 140	6	130	-20	-1	-6
140 - 160	10	150 = a	0	0	0
160 - 180	14	170	20	1	14
180 - 200	12	190	40	2	24
	$\sum f_i = 50$			S	$\sum f_i u_i = 16$

Mean = a + $(\sum f_i u_i / \sum f_i) h$

= 150 + (16/50) 20

= 150 + (32/5)

= 150 + 6.4

= 150 + 6.4

Hence, the mean daily wage is Rs. 161.4.

16. The ratio of the area of two similar triangles is equal to the square of the ratio of their corresponding sides. Prive it.

Solution:

Given,

Two triangles ABC and PQR such that $\triangle ABC \sim \triangle PQR$ Draw altitudes AM and PN of two triangles ABC and PQR respectively.

в со R

 $\begin{array}{l} \operatorname{ar}(\Delta ABC) = 1/2 \ BC \times AM \\ \operatorname{ar}(\Delta PQR) = 1/2 \ QR \times PN \\ \operatorname{Now}, \\ \operatorname{ar}(\Delta ABC)/\operatorname{ar}(\Delta PQR) = [(1/2) \ BC \times AM] / [(1/2) \ QR \times PN] \\ = (BC \times AM) / (QR \times PN) \dots(i) \\ \operatorname{In} \Delta ABM \ \operatorname{and} \Delta PQN, \\ \angle B = \angle Q \ (\Delta ABC \sim \Delta PQR) \\ \angle M = \angle N \ (each \ 90^{\circ}) \\ \operatorname{Thus}, \ \Delta ABM \sim \Delta PQN \ (by \ AA \ similarity \ criterion) \\ \Rightarrow \ AM/PN = AB/PQ \dots(ii) \\ \Delta ABC \sim \Delta PQR \ (given) \\ AB/PQ = BC/QR = CA/RP \dots(iii) \end{array}$

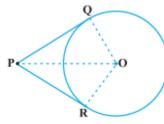
From (i) and (iii), $ar(\Delta ABC)/ar(\Delta PQR) = (AB/PQ) \times (AM/PN)$ $= (AB/PQ) \times (AB/PQ)$ [From (ii)] $= (AB/PQ)^2$ Similarly, $ar(\Delta ABC)/ar(\Delta PQR) = (AB/PQ)^2 = (BC/QR)^2 = (CA/RP)^2$ Hence proved.

OR

The lengths of tangents drawn from an external point to a circle are equal. Prove it.

Solution:

Given, Given, PQ and PR are the tangents to the circle with centre O from an external point P. To prove: PQ = PR Construction: Join OQ, OR and OP.



Proof:

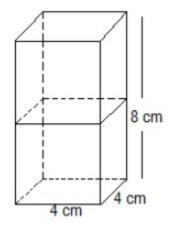
We know that the radius is perpendicular to the tangent through the point of contact. $\angle OQP = \angle ORP = 90^{\circ}$ In right $\triangle OQP$ and ORP, OQ = OR (radii of the same circle) OP = OP (common) By RHS congruence rule, $\triangle OQP \cong \triangle ORP$ By CPCT, PQ = PRHence proved.

17. Two cubes each of volume 64 cm³ are joined end to end. Find the surface area of the resulting cuboid.

Solution:

Given, Volume of cube = 64 cm^3 (side)³ = $(4)^3$ Side of the cube = 4 cm Now, two cubes are joined end to end and result in a cuboid. Length of cuboid = 1 = 4 cmBreadth = b = 4 cm

Height = h = 8 cm



Surface area of the cuboid = 2(lb + bh + lh)= $2(8 \times 4 + 4 \times 4 + 4 \times 8)$ = 2(32 + 16 + 32)= 2×80

$$= 160 \text{ cm}^2$$

OR

A cylindrical bucket 20 cm high and with a radius of base 16 cm is filled with sand. This bucket is emptied on the ground and a conical heap of sand is formed. If the height of the conical heap is 15 cm, find the radius and slant height of the heap.

Solution:

Given,

Height of the cylindrical bucket = H = 20 cm Radius of the base of cylindrical bucket = R = 16 cm Height of the conical heap = h = 15 cm Let r be the radius of the base of conical heap. Volume of sand in cylindrical bucket = Volume of sand of conical heap $\pi R^2 H = (1/3)\pi r^2 h$ $16 \times 16 \times 20 = (1/3) \times r^2 \times 15$ $r^2 = (16 \times 16 \times 20 \times 3)/15$ $r^2 = 16 \times 16 \times 4$ $r^2 = (16)^2 \times (2)^2$ $r = 16 \times 2$ r = 32 cmSlant height = I = $\sqrt{(r^2 + h^2)}$ $=\sqrt{(32^2+15^2)}$ = \(1024 + 225) = √(1249) = 35.34 cm