

EXERCISE 27(A)

1. Two angles of a quadrilateral are 89⁰ and 113⁰. If the other two angles are equal; find the equal angles.

Solution:

Let us consider the other angle as x^0 As per the question, we have $89^0 + 113^0 + x^0 + x^0 = 360^0$ $2x^0 = 360^0 - 202^0$ $2x^0 = 158$ $x^0 = 158 / 2$ We get, $x = 79^0$ Therefore, the other two equal angles are 79^0 each.

2. Two angles of a quadrilateral are 68⁰ and 76⁰. If the other two angles are in the ratio 5: 7; find the measure of each of them.

Solution:

Given Two angles are 68^{0} and 76^{0} Let us consider the other two angles as 5x and 7x Hence, $68^{0} + 76^{0} + 5x + 7x = 360^{0}$ $12x + 144^{0} = 360^{0}$ $12x = 360^{0} - 144^{0}$ $12x = 216^{0}$ $x = 216^{0} / 12$ We get, $x = 18^{0}$ Now, the other angles is calculated as below $5x = 5 \times 18^{0} = 90^{0}$ $7x = 7 \times 18^{0} = 126^{0}$ Therefore, the values of the other angles are 90^{0} and 126^{0}

3. Angles of a quadrilateral are (4x)⁰, 5(x+2)⁰, (7x - 20)⁰ and 6(x + 3)⁰. Find (i) the value of x.
(ii) each angle of the quadrilateral.
Solution:
Given
The angles of quadrilateral are,

 $(4x)^0$, $5(x + 2)^0$, $(7x - 20)^0$ and $6(x + 3)^0$ We know that the sum of angles in a quadrilateral is 360° Hence. $(4x)^0 + 5(x+2)^0 + (7x-20)^0 + 6(x+3)^0 = 360^0$ $4x + 5x + 10^{\circ} + 7x - 20^{\circ} + 6x + 18^{\circ} = 360^{\circ}$ $22x + 8^0 = 360^0$ $22x = 360^{\circ} - 8^{\circ}$ $22x = 352^{\circ}$ $x = 352^{\circ} / 22$ We get, $x = 16^{0}$ Hence, the value of x is 16^0 Therefore, the angles are, $(4x)^0 = (4 \times 16)^0$ $= 64^{\circ}$ $5(x+2)^0 = 5(16+2)^0$ $= 90^{\circ}$ $6(x+3)^0 = 6(16+3)^0$ $= 114^{0}$

4. Use the information given in the following figure to find: (i) **x**

(ii) $\angle B$ and $\angle C$

Solution: Here, given that, $\angle A = 90^{\circ}$ $\angle B = (2x + 4)^{\circ}$

 $\angle C = (3x - 5)^0$ $\angle D = (8x - 15)^0$ We know that, All the angles in a quadrilateral is 360° So, $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ $90^{0} + (2x + 4)^{0} + (3x - 5)^{0} + (8x - 15)^{0} = 360^{0}$ On further calculation, we get $90^0 + 2x + 4^0 + 3x - 5^0 + 8x - 15^0 = 360^0$ $74^0 + 13x = 360^0$ $13x = 360^{\circ} - 74^{\circ}$ $13x = 286^{\circ}$ $x = 286^{\circ} / 13$ We get, $x = 22^{0}$ The value of x is 22^0 Now. $\angle B = 2x + 4 = 2 \times 22^{0} + 4$ $=48^{0}$ $\angle C = 3x - 5 = 3 \times 22^0 - 5$ $= 61^{0}$ Therefore, $\angle B = 48^{\circ}$ and $\angle C = 61^{\circ}$

5. In quadrilateral ABCD, side AB is parallel to side DC. If $\angle A$: $\angle D = 1$: 2 and $\angle C$: $\angle B = 4$: 5

(i) Calculate each angle of the quadrilateral.

(ii) Assign a special name to quadrilateral ABCD. Solution:

Let us consider $\angle A = x$ and $\angle D = 2x$ $\angle C: \angle B = 4:5$ Let us consider $\angle C = 4y$ and $\angle B = 5y$ Also, given AB || DC and the sum of opposite angles of quadrilateral is 180° So, $\angle A + \angle D = 180^{\circ}$ $x + 2x = 180^{\circ}$ $3x = 180^{\circ}$ We get, $x = 60^{0}$ Therefore, $\angle A = 60^{\circ}$ $\angle D = 2x$ $= 2 \times 60^{\circ}$ $= 120^{0}$ Therefore, $\angle D = 120^{\circ}$ Now. $\angle B + \angle C = 180^{\circ}$ $5y + 4y = 180^{\circ}$ $9y = 180^{\circ}$ We get, $y = 20^{0}$ Now, $\angle B = 5y = 5 \times 20^{\circ}$ $= 100^{\circ}$ $\angle C = 4y = 4 \times 20^{\circ}$ $= 80^{\circ}$ Therefore, $\angle A = 60^{\circ}$; $\angle B = 100^{\circ}$; $\angle C = 80^{\circ}$ and $\angle D = 120^{\circ}$

6. From the following figure find:
(i) x,
(ii) ∠ABC,
(iii) ∠ACD.
Solution:

(i)We know that, In quadrilateral the sum of angles is equal to 360° Hence, $x + 4x + 3x + 4x + 48^0 = 360^0$ $12x = 360^{\circ} - 48^{\circ}$ 12x = 312We get, $x = 26^{\circ}$ Hence, the value of x is 26° (ii) $\angle ABC = 4x$ $4 \times 26^0 = 104^0$ Therefore, $\angle ABC = 104^{\circ}$ (iii) $\angle ACD = 180^{\circ} - 4x - 48^{\circ}$ $= 180^{\circ} - 4 \times 26^{\circ} - 48^{\circ}$ $= 180^{\circ} - 104^{\circ} - 48^{\circ}$ We get, $= 28^{\circ}$ Therefore, $\angle ACD = 28^{\circ}$

7. Given: In quadrilateral ABCD; $\angle C = 64^{\circ}$, $\angle D = \angle C - 8^{\circ}$; $\angle A = 5(a + 2)^{\circ}$ and $\angle B = 2(2a + 7)^{\circ}$. Solution: Given $\angle C = 64^{\circ}$ $\angle D = \angle C - 8^{\circ}$ $= 64^{\circ} - 8^{\circ}$ We get, $\angle D = 56^{\circ}$

 $\angle A = 5 (a + 2)^0$ $\angle B = 2(2a + 7)^0$ We know that, sum of all the angles in a quadrilateral $= 360^{\circ}$ So, $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ $5(a+2)^0 + 2(2a+7)^0 + 64^0 + 56^0 = 360^0$ On further calculation, we get $5a + 10^{\circ} + 4a + 14^{\circ} + 64^{\circ} + 56^{\circ} = 360^{\circ}$ $9a + 144^0 = 360^0$ $9a = 360^{\circ} - 144^{\circ}$ $9a = 216^{\circ}$ We get, $a = 24^{0}$ $\angle A = 5(a + 2)$ = 5(24 + 2)We get, $= 130^{\circ}$ 8. In the given figure $\angle b = 2a + 15$ And $\angle c = 3a + 5$; find the values of b and c

Solution:

 $\angle b = 2a + 15$ and $\angle c = 3a + 5$ Sum of angles of a quadrilateral = 360° $70^{\circ} + \angle a + \angle b + \angle c = 360^{\circ}$ $70^{\circ} + a + (2a + 15) + (3a + 5) = 360^{\circ}$


```
70^{0} + a + 2a + 15 + 3a + 5 = 360^{0}

6a + 90^{0} = 360^{0}

6a = 360^{0} - 90^{0}

6a = 270^{0}

We get,

a = 45^{0}

Hence, \angle a = 45^{0}

b = 2a + 15 = 2 \times 45^{0} + 15

= 90^{0} + 15

= 105^{0}

c = 3a + 5 = 3 \times 45^{0} + 5

= 135^{0} + 5

= 140^{0}

Therefore, \angle a = 45^{0}; \angle b = 105^{0} and \angle c = 140^{0}
```

9. Three angles of a quadrilateral are equal. If the fourth angle is 69⁰; find the measure of equal angles. Solution:

Given that,

х

Three angles of a quadrilateral are equal Let us consider each angle as x^0 Hence, $x^0 + x^0 + x^0 + 69^0 = 360^0$ $3x = 360^0 - 69^0$ $3x = 291^0$ $x = 291^0 / 3$ We get, $x = 97^0$ Therefore, the measure of all the equal angles is

Therefore, the measure of all the equal angles is 97°

10. In quadrilateral PQRS, $\angle P: \angle Q: \angle R: \angle S = 3: 4: 6: 7$.

Calculate each angle of the quadrilateral and then prove that PQ and SR are parallel to each other. Is PS also parallel to QR? Solution:

= 180° Therefore, PQ || RS Since, $\angle P + \angle Q = 54^{\circ} + 72^{\circ}$ = 126° Which is not equal to 180° Therefore, PS and QR are not parallel

11. Use the information given in the following figure to find the value of **x**.

12. The following figure shows a quadrilateral in which sides AB and DC are parallel. If $\angle A$: $\angle D = 4$: 5, $\angle B = (3x - 15)^0$ and $\angle C = (4x + 20)^0$, find each angle of the quadrilateral ABCD.

$$\begin{split} & \angle C = 4x + 20^0 = 4 \times 25^0 + 20^0 \\ & = 100^0 + 20^0 \\ & = 120^0 \end{split}$$

