

Telangana Board SSC Class 10 Maths 2017 Question Paper 1 with Solutions

PART A SECTION - I

1. Write the nature of roots of the quadratic equation $2x^2 - 5x + 6 = 0$.

Solution:

Given, $2x^2 - 5x + 6 = 0$ Comparing with the standard form $ax^2 + bx + c = 0$, a = 2, b = -5, c = 6Discriminant = $b^2 - 4ac$ = $(-5)^2 - 4(2)(6)$ = 25 - 48= -23 < 0Hence, the roots of the given quadratic equation are not real, i.e. the roots are imaginary.

2. Find the value of $\log_{\sqrt{2}} 256$.

Solution:

Let $\log_{\sqrt{2}} 256 = x$ $\Rightarrow (\sqrt{2})^x = 256$ $\Rightarrow (\sqrt{2})^x = 2^8$ $\Rightarrow (\sqrt{2})^x = (\sqrt{2})^{16}$ $\Rightarrow x = 16$ Therefore, $\log_{\sqrt{2}} 256 = 16$

3. In a GP, $t_n = (-1)^n 2017$. Find the common ratio.

Solution:

Given, nth term of GP is $t_n = (-1)^n 2017$ $t_1 = (-1)^1 2017 = -2017$ $t_2 = (-1)^2 2017 = 2017$ Common ratio = t2/t1 = -2017/2017 = -1

4. Srikar says that the order of the polynomial $(x^2 - 5)(x^3 + 1)$ is 6. Do you agree with him? How?

Solution:

Given polynomial is $p(x) = (x^2 - 5)(x^3 + 1)$ $= x^2(x^3 + 1) - 5(x^3 + 1)$

 $= x^{5} + x^{2} - 5x^{3} - 5$ $= x^{5} - 5x^{3} + x^{2} - 5$

The highest degree of the polynomial is 5. Hence, the order of the polynomial is not 6 and not agreeing with Srikar.

5. A(0, 3), B(k, 0) and AB = 5. Find the positive value of k.

Solution:

Given, A(0, 3), B(k, 0) and AB = 5 Using the distance formula, AB = $\sqrt{[(k - 0)^2 + (0 - 3)^2]}$ 5 = $\sqrt{(k^2 + 3^2)}$ Squaring on both sides, 25 = $k^2 + 9$ $\Rightarrow k^2 = 25 - 9$ $\Rightarrow k^2 = 16$ $\Rightarrow k = \sqrt{16}$ $\Rightarrow k = \pm 4$ Therefore, the positive value of k = 4.

6. Show that the pair of linear equations 7x + y = 10 and x + 7y = 10 are consistent.

Solution:

Given, 7x + y = 10 x + 7y = 10Comparing with the standard form $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$, $a_1 = 7, b_1 = 1, c_1 = -10$ $a_2 = 1, b_2 = 7, c_2 = -10$ $a_1/a_2 = 7/1$ $b_1/b_2 = 1/7$ $a_1/a_2 \neq b_1/b_2$

Hence, the given pair of linear equations are consistent and have a unique solution.

7. Represent A \cap B through Venn diagram, where A = {1, 4, 6, 9, 10} and B = {perfect squares less than 25}.

Solution:

Given, $A = \{1, 4, 6, 9, 10\}$ $B = \{\text{perfect squares less than } 25\} = \{1, 4, 9, 16\}$ $A \cap B = \{1, 4, 6, 9, 10\} \cap \{1, 4, 9, 16\} = \{1, 4, 9\}$

SECTION - II

8. Write any two three digit numbers. Find their LCM and GCD by prime factorisation method.

Solution:

Let 126 and 340 are the two three digit numbers. Prime factorisation of 126: $126 = 2 \times 3 \times 3 \times 7$ Prime factorisation of 340: $340 = 2 \times 2 \times 5 \times 17$ LCM = $2 \times 2 \times 3 \times 3 \times 7 \times 5 \times 17 = 21420$ GCD = 2

9. Find the sum of first 10 terms of an AP 3, 15, 27, 39,....

Solution:

Given AP: 3, 15, 27, 39,... First term = a = 3Common difference = d = 12Sum of the first n terms $S_n = n/2[2a + (n - 1)d$ $S_{10} = (10/2) [2(3) + (10 - 1)12]$ = 5(6 + 108)= 5×114 = 570Hence, the sum of the first 10 terms of the given AP is 570.

10. Which of $\sqrt{2}$ and 2 is a zero of the polynomial $p(x) = x^3 - 2x$? Why?

Solution:

Given, $p(x) = x^3 - 2x$ $p(\sqrt{2}) = (\sqrt{2})^3 - 2(\sqrt{2}) = 2\sqrt{2} - 2\sqrt{2} = 0$ $p(2) = (2)^3 - 2(2) = 8 - 4 = 4 \neq 0$ Therefore, $\sqrt{2}$ is the zero of the given polynomial.

11. The sum of a number and its reciprocal is 10/3. Find the number.

Solution:

Let x be any number. According to the given, x + 1/x = 10/3 $(x^2 + 1)/x = 10/3$ $3(x^2 + 1) = 10x$ $3x^2 + 3 - 10x = 0$ $3x^2 - 9x - x + 3 = 0$ 3x(x - 3) - 1(x - 3) = 0 (3x - 1)(x - 3) = 0 3x - 1 = 0, x - 3 = 0 x = 1/3, x = 3Hence, the required number is 3 or 1/3.

12. Two vertices of a triangle are (3, 2), (-2, 1) and its centroid is (5/3, -1/3). Find the third vertex of the triangle.

Solution:

Given, Two vertices of a triangle are (3, 2), (-2, 1). Centroid = $(5/3, -\frac{1}{3})$ Let (x, y) be the third vertex. Using centroid formula, $(5/3, -1/3) = [(x_1 + x_2 + x_3)/2, (y_1 + y_2 + y_3)/3]$ (5/3, -1/3) = [(3 - 2 + x)/3, (2 + 1 + y)/3] (5/3, -1/3) = [(1 + x)/3, (3 + y)/3] $\Rightarrow (1 + x)/3 = 5/3, (3 + y)3 = -1/3$ $\Rightarrow 1 + x = 5, 3 + y = -1$ $\Rightarrow x = 4, y = -4$ Hence, the third vertex of the triangle is (4, -4).

13. Find the angle made by the line joining (5, 3) and (-1, -3) with the positive direction of X-axis.

Solution:

Let the given points be: $(x_1, y_1) = (5, 3)$ $(x_2, y_2) = (-1, -3)$ Slope = m = $(y_2 - y_1)/(x_2 - x_1)$ = (-3 - 3)/(-1 - 5)= -6/-6= 1 Let θ be the angle made by the line with x-axis. We know that, m = tan θ 1 = tan θ tan 45° = tan θ tan 45° = tan θ $\theta = 45^{\circ}$ Hence, the required angle is 45°.

SECTION - III

14. From the following Venn diagram, write the elements of the sets of A and B. And verify $n(A \cup B) + n(A \cap B) = n(A) + n(B)$.

Solution:

 $\begin{array}{l} A = \{a, c, d, f, h\} \\ B = \{a, b, d, e, g, h\} \\ A \cup B = \{a, c, d, f, h\} \cup \{a, b, d, e, g, h\} = \{a, b, c, d, e, f, g, h\} \\ A \cap B = \{a, c, d, f, h\} \cap \{a, b, d, e, g, h\} = \{a, d, h\} \\ n(A) = 5 \\ n(B) = 6 \\ n(A \cup B\} = 8 \\ n(A \cap B) = 3 \\ n(A \cup B) + n(A \cap B) = 8 + 3 = 11 \\ n(A) + n(B) = 5 + 6 = 11 \\ Therefore, n(A \cup B) + n(A \cap B) = n(A) + n(B) \end{array}$

OR

Use Euclid's division lemma to show that the square of any positive integer is of the form 5n or 5n + 1 or 5n + 4, where n is a whole number.

Solution:

Let a be any positive integer and b = 5. By Euclid division lemma, a = bq + r, where $0 \le r < b$ $\Rightarrow a = 5q + r$; r = 0, 1, 2, 3, 4When r = 0, a = 5q $a^2 = (5q)^2$ $a^2 = 25q^2$ $a^2 = 5(5q^2)$ $a^2 = 5n$ where $n = 5q^2$

When r = 1, a = 5q + 1 $a^2 = (5q + 1)^2$ $a^2 = 25q^2 + 10q + 1$ $a^2 = 5(5q^2 + 2q) + 1$ $a^2 = 5n + 1$ where $n = 5q^2 + 2q$ When r = 2, a = 5q + 2 $a^2 = (5q + 2)^2$ $a^2 = 25q^2 + 20q + 4$ $a^2 = 5(5q^2 + 4q) + 4$ $a^2 = 5n + 4$ where $n = 5q^2 + 4q$ When r = 3, a = 5q + 3 $a^2 = (5q + 3)^2$ $a^2 = 25q^2 + 30q + 5 + 4$ $a^2 = 5(5q^2 + 6q + 1) + 4$ $a^2 = 5n + 4$ where $n = 5q^2 + 6q + 1$ When r = 4, a = 5q + 4 $a^2 = (5q + 4)^2$ $a^2 = 25q^2 + 40q + 15 + 1$ $a^2 = 5(5q^2 + 8q + 3) + 1$ $a^2 = 5n + 1$ where $n = 5q^2 + 8q + 3$

Hence, the square of any positive integer is of the form 5n or 5n + 1 or 5n + 4, where n is a whole number.

15. Find the sum of all three digit natural numbers, which are divisible by 3 and not divisible by 6.

Solution:

```
Three digit natural numbers that are divisible by 3:
102, 105, 108, 111, 114,...,993, 996, 999
Three digit natural numbers that are divisible by 3 but not by 6:
105, 111, 117,..., 993, 999
This is an AP with a = 105, d = 6 and a_n = 999
nth term of AP
a_n = a + (n - 1)d
999 = 105 + (n - 1)6
⇒ (n - 1)6 = 999 - 105
⇒ n - 1 = 894/6
⇒ n - 1 = 149
\Rightarrow n = 149 + 1
\Rightarrow n = 150
Sum of the first n terms
S_n = n/2(a + an)
S_{150} = (150/2) \times (105 + 999)
= 75 \times 1104
```


= 82800

Hence, the required sum is 82800.

OR

Divide $3x^4 - 5x^3 + 4x^2 + 3x - 5$ by $x^2 - 3$ and verify the division algorithm.

Solution:

Let $p(x) = 3x^4 - 5x^3 + 4x^2 + 3x - 5$ $g(x) = x^2 - 3$ $\begin{vmatrix}
3x^2 - 5x + 13 \\
3x^4 - 5x^3 + 4x^2 + 3x - 5 \\
3x^4 & -9x^2 \\
-5x^3 + 13x^2 + 3x - 5 \\
-5x^3 & +15x \\
13x^2 - 12x - 5 \\
-13x^2 & -39 \\
-12x + 34
\end{vmatrix}$

Quotient = $q(x) = 3x^2 - 5x + 13$ Remainder = r(x) = -12x + 34By division algorithm, p(x) = [g(x) q(x)] + r(x) $g(x) q(x) + r(x) = (x^2 - 3)(3x^2 - 5x + 13) - 12x + 34$ $= 3x^4 - 5x^3 + 13x^2 - 9x^2 + 15x - 39 - 12x + 34$ $= 3x^4 - 5x^3 + 4x^2 + 3x - 5$ = p(x)Hence verified.

16. The perimeter of a right-angles triangle is 60 cm and its hypotenuse is 25 cm. Find the remaining two sides.

Solution:

Let ABC be the right triangle in which B is the right angle. Given, Hypotenuse = AC = 25 cm Perimeter = 60 cmAB + BC + AC = 60AB + BC + 25 = 60AB + BC = 35 cmBy Pythagoras theorem, $AC^2 = AB^2 + BC^2$ $(25)^2 = AB^2 + (35 - AB)^2$ $625 = AB^2 + 1225 + AB^2 - 70AB$ $2AB^2 - 70AB + 1225 - 625 = 0$ $2AB^2 - 70AB + 600 = 0$ $AB^2 - 35AB + 300 = 0$ Let AB = x $x^2 - 35x + 300 = 0$ $x^2 - 20x - 15x + 300 = 0$ x(x - 20) - 15(x - 20) = 0

(x - 15)(x - 20) = 0x = 15, x = 20 Therefore, the remaining sides of the triangle are 15 cm and 20 cm.

OR

The points C and D are on the line segment joining A(-4, 7) and B(5, 13) such that AC = CD = DB. Then find coordinates of points C and D.

Solution:

Given,

The points C and D are on the line segment joining A(-4, 7) and B(5, 13) such that AC = CD = DB.

17. Draw the graph for the polynomial $p(x) = x^2 - 5x + 6$ and find the zeroes from the graph.

Solution:

Given, $p(x) = x^2 - 5x + 6$

х	-1	0	1	2	3	5
p(x)	12	6	2	0	0	6

Parabola intersecting the x-axis at (2, 0) and (3, 0). Hence, the zeroes of the given polynomial are 2 and 3.

OR

Draw the graph of 2x + y = 6 and 2x - y + 2 = 0 and find the solution from the graph.

Solution:

Given, 2x + y = 6 2x - y + 2 = 0Consider the first equation: 2x + y = 6y = -2x + 6

x	-2	0	1	2	3
у	10	6	4	2	0

Now, consider another equation:

2x - y + 2 = 0y = 2x + 2

Graph:

The lines representing the given pair of equations intersecting each other at (1, 4). Hence, the solution is x = 1 and y = 4.