

Telangana Board SSC Class 10 Maths 2019 Question Paper 2 with Solutions

PART A SECTION - I

1. Evaluate cosec 39° sec 51° - tan 51° cot 39° .

Solution:

cosec 39° sec 51° - tan 51° cot 39° = cosec (90° - 51°) sec 51° - tan 51° cot (90° - 51°) = sec 51° sec 51° - tan 51° tan 51° = sec²51° - tan²51° = 1

2. Write the similarity criterion by which the given pair of triangles are similar.

Solution:

From the given, $OA/OB = 3/6 = \frac{1}{2}$ $OC/OB = 2.5/5 = \frac{1}{2}$ $\angle AOC = \angle BOD$ (vertically opposite angles) By SAS similarity criterion, $\triangle AOC \sim \triangle BOD$

3. From English alphabet, if a letter is chosen at random, then find the probability that the letter is a consonant.

Solution:

Total number of outcomes = 26

https://byjus.com

i.e. English alphabet = 26Number of consonants = 21P(choosing a consonant) = 21/26

4. In a right triangle ABC, right angled at C in which AB = 13 cm, BC = 5 cm, determine the value of $\cos^2 B + \sin^2 A$.

Solution:

Given,

In a right triangle ABC, right angled at C in which AB = 13 cm, BC = 5 cm.

5. A point P is 25 cm from the center O of the circle. The length of the tangent drawn from P to the circle is 24 cm. Find the radius of the circle.

Solution:

Given,

We know that the radius is perpendicular to the tangent through the point of contact.

In right triangle OAP, $OP^2 = AP^2 + OA^2$ $OA^2 = OP^2 - AP^2$ $= (25)^2 - (24)^2$

https://byjus.com

= 625 - 576= 49 OA = 7 cm Hence, the radius of the circle is 7 cm.

6. Find the median of the first seven composite numbers.

Solution:

The first seven composite numbers are 4, 6, 8, 9, 10, 12, 14. These numbers are in ascending order. n = 7Median = (7 + 1)/2 th term = 4th term = 9 Hence, the median of the first seven composite numbers is 9.

7. In a hemispherical bowl of 2.1 cm radius ice-cream is there. Find the volume of the bowl.

Solution:

Given, Radius of hemispherical bowl = r = 2.1 cmVolume = $\binom{2}{3}\pi r^3$ = $\binom{2}{3} \times (22/7) \times 2.1 \times 2.1 \times 2.1$ = 19.404 cm³ Therefore, the volume of the bowl is 19.404 cm³.

SECTION - II

8. Write the mode formula for grouped data and explain the terms in it. Solution: Mode for grouped data = $1 + [(f_1 - f_0)/(2f_1 - f_0 - f_2)] \times h$

Here, (1 - 10)/(21 - 1)

l = Lower limit of the modal class

 $f_1 = Frequency of the modal class$

 $f_0 =$ Frequency of the class preceding the modal class

 f_2 = Frequency of the class succeeding the modal class

h = class size (or class height)

9. In the given figure, TA and TB are tangents to the circle with centre O. If $\angle ATB = 80^{\circ}$, then find the measure of $\angle ABT$.

Solution:

Given, TA and TB are tangents to the circle. $\angle ATB = 80^{\circ}$ In triangle TAB, $\angle ATB + \angle TBA + \angle BAT = 180^{\circ}$ $80^{\circ} + \angle ABT + \angle ABT = 180^{\circ}$ (TA and TB are tangents from an external point T) $2\angle ATB = 180^{\circ} - 80^{\circ}$ $\angle ATB = 100^{\circ}/2$ $\angle ATB = 50^{\circ}$

10. A bag contains balls which are numbered from 1 to 50. A ball is drawn at random from the bag, the probability that it bears a two digit number multiple of 7.

Solution:

Total number of outcomes = 50 i.e. numbers from 1 to 50 Two digit multiples of 7 are 14, 21, 28, 35, 42, 49. Number of favourable outcomes = 6 Hence, the required probability = 6/50 = 3/25

11. From the top of the building the angle of elevation of the top of the cell tower is 60° and the angle of depression to its foot is 45° , if the distance of the building from the tower is 30 meters, draw the suitable diagram to the given data.

Solution:

Let AB be the building and CD be the cell tower. BD is the distance of the building from the tower.

12. Find the value of $(\tan^2 60^\circ + \cot^2 30^\circ) / (\sin^2 30^\circ + \cos^2 60^\circ)$.

Solution:

```
\begin{aligned} (\tan^2 60^\circ + \cot^2 30^\circ) / (\sin^2 30^\circ + \cos^2 60^\circ) \\ &= [\tan^2 (90^\circ - 30^\circ) + \cot^2 30^\circ] / [\sin^2 30^\circ + \cos^2 (90^\circ - 30^\circ)] \\ &= (\cot^2 30^\circ + \cot^2 30^\circ) / (\sin^2 30^\circ + \cos^2 30^\circ) \\ &= 2\cot^2 30^\circ / 1 \\ &= 2 (\sqrt{3})^2 \\ &= 2(3) \\ &= 6 \end{aligned}
```

13. A right circular cylinder has a radius 3.5 cm and height 14 cm. Find the curved surface area.

Solution:

Given, Radius of cylinder = r = 3.5 cm Height of cylinder = h = 14 cm Curved surface area = 2π rh = 2 × (22/7) × 3.5 × 14 = 88 × 3.5 = 308 cm²

SECTION - III

https://byjus.com

14. Construct a triangle PQR, in which PQ = 4 cm, QR = 6 cm and \angle PQR = 70°. Construct a triangle such that each side of the new triangle is 3/4 of the triangle PQR.

Solution:

Therefore, $\Delta P'QR'$ is the required triangle similar to the ΔPQR .

OR

Draw less than Ogive for the following frequency distribution. Find the median from the obtained curve.

IQ	60 - 70	70 - 80	80 - 90	90 - 100	100 - 110	110 - 120	120 - 130
No.of students	2	5	12	31	39	10	4

Solution:

Class	Cumulative Frequency
Less than 60	2

Less than 70	2 + 5 = 7
Less than 80	7 + 12 = 19
Less than 90	19 + 31 = 50
Less than 100	50 + 39 = 89
Less than 110	89 + 10 = 99
Less than 120	99 + 4 = 103

15. Show that $[\cos \theta / (1 - \sin \theta)] + [(1 - \sin \theta) / \cos \theta] = 2 \sec \theta$

Solution:

LHS = $[\cos \theta / (1 - \sin \theta)] + [(1 - \sin \theta) / \cos \theta]$ = $[\cos^2\theta + (1 - \sin \theta)^2] / [\cos \theta (1 - \sin \theta)]$ = $[\cos^2\theta + 1 + \sin^2\theta - 2 \sin \theta] / [\cos \theta (1 - \sin \theta)]$ = $(2 - 2 \sin \theta) / [\cos \theta (1 - \sin \theta)]$ = $[2(1 - \sin \theta)] / [\cos \theta (1 - \sin \theta)]$

= 2 sec θ = RHS Therefore, $[\cos \theta / (1 - \sin \theta)] + [(1 - \sin \theta) / \cos \theta] = 2 \sec \theta$

OR

In a right angle triangle, the hypotenuse is 10 cm more than the shortest side. If the third side is 6 cm less than the hypotenuse, find the sides of the right angle triangle.

Solution:

Let x cm be the shortest side of a right triangle. Hypotenuse = (x + 10) cm Length of the third side = (x + 10) - 6 = (x + 4) cm By Pythagoras theorem, $(x + 10)^2 = x^2 + (x + 4)^2$ $x^2 + 20x + 100 = x^2 + x^2 + 8x + 16$ $\Rightarrow x^2 + 8x + 16 - 20x - 100 = 0$ $\Rightarrow x^2 - 12x - 84 = 0$ $\Rightarrow x = [-(-12) \pm \sqrt{((-12)^2 - 4(1)(-84))}]/2(1)$ = $[12 \pm \sqrt{(144 + 336)}]/2$ x = 16.9 cm Therefore, shortest side = 16.95 cm Hypotenuse = 26.95 cm Third side = 26.95 cm

16. Find the mean age of 100 residents of a colony from the following data.

Age (in years)	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60	60 - 70
No. of Persons	10	15	25	25	10	10	5

Solution:

Age (in years)	Mid-point (x)	No. of persons (f)	fx
0 - 10	5	10	50
10 - 20	15	15	225
20 - 30	25	25	625
30 - 40	35	25	875
40 - 50	45	10	450
50 - 60	55	10	550

60 - 70	65	5	325
		∑f = 100	∑fx = 3100

Mean = $\sum fx / \sum f$ = 3100/100 = 31 Therefore, the mean age is 31 years.

OR

A toy is made with seven equal cubes of sides $\sqrt{7}$ cm. Six cubes are joined to six faces of a seventh cube. Find the total surface area of the toy.

Solution:

Given, Side of cube = $\sqrt{7}$ cm Surface area of one face of a cube = $(\sqrt{7})^2 = 7$ cm² Six cubes are joined to six faces of a seventh cube. Thus, only five sides of a cube are exposed and only a surface area of six cubes is effective. Surface area of five faces of a cube = $5 \times 7 = 35$ cm² Total surface area of the toy = $6 \times$ Area of five faces of a cube = 6×35 = 210 cm²

17. If two dice are thrown at the same time, find the probability of getting the sum of the dots on top is prime.

Solution:

Total number of outcomes = $6^2 = 36$ Favourable outcomes of getting the sum of the dots on the top of dice is prime = {(1, 1), (1, 2), (1, 4), (1, 6), (2, 1), (2, 3), (2, 5), (3, 2), (3, 4), (4, 1), (4, 3), (5, 2), (5, 6), (6, 1), (6, 5)} = 15 Hence, the required probability = 15/36

OR

The angle of elevation of the top of the hill from the foot of a tower is 60° and the angle of elevation of the top of the tower from the foot of the hill is 30° . If the tower is 50 m high. Find the height of the hill.

Solution:

Let AB be the hill and CD be the tower.

CD = 50 m In right triangle ABC, $\cot 60^\circ = x/h$ $1/\sqrt{3} = x/h$ $x = h/\sqrt{3}$ (i) In right triangle DBC, $\cot 30^\circ = x/50$ $\sqrt{3} = x/50$ $x = 50\sqrt{3}$(ii) From (i) and (ii), $h/\sqrt{3} = 50\sqrt{3}$ $h = 50 \times 3$ h = 150 m Hence, the height of the hill is 150 m.