_	tion Paper contains 20 printed p	ages.	પ્રશ્ન પેપરનો સેટ નંબર જેની			
	& Part - B)		સામેનું વર્તુળ OMR શીટમાં			
Sl.No.	(50 (E)	ઘટ કરવાનું રહે છે.			
		,	Set No. of Question Paper, circle against which is to be			
	•	IARCH, 2019)	darken in OMR sheet.			
		ENCE STREAM	$\mathbf{\Omega}$			
David A	•	CLASS - XII)	114			
	Time: 1 Hour / Marks: 50 Time: 2 Hours / Marks: 50		U			
Tart - D		Dant A)				
	`	Part - A)				
Time: 1	•		[Maximum Marks: 50			
Instruct						
1)	There are 50 objective type	(M.C.Q.) questions i	n Part - A and all questions			
	are compulsory.					
2)	The questions are serially numbered from 1 to 50 and each carries 1 mark.					
3)	Read each question carefully, select proper alternative and answer in the					
	O.M.R. sheet.					
4)	The OMR Sheet is given for answering the questions. The answer of each					
	question is represented by (A) O, (B) O, (C) O, (D) O. Darken the					
	circle of the correct answer					
5)	Rough work is to be done in the space provided for this purpose in the Test					
	Booklet only.					
6)	Set No. of Question Paper printed on the upper- most right side of the Question					
	Paper is to be written in th					
7)	Use of simple calculator and log table is allowed, if required.					
8)	Notations used in this ques	tion paper have prop	er meaning.			
1)	The number of binary opera	tions on {1,2} is	Rough Work			
	(Δ) 8					

(B) 16

(C) 2.

(D) 4

2) Functions $f: \mathbb{R}^+ \to \mathbb{R}^+, f(x) = x^3, g: \mathbb{R}^+ \to \mathbb{R}^+, g(x) = x^{\frac{1}{3}}$ then $(f \circ g)(x) = \underline{\hspace{1cm}}$

- (A) x^3
- (B) $\frac{1}{x}$
- (C) $\sqrt[3]{x}$
- (D) x.
- 3) The domain of sin⁻¹ is _____
 - (A) [0, 1]

(B) $\left(-\infty,\infty\right)$

(C) $[0, \pi]$

- (D) [-1,1]
- 4) $\cos\left(\cos^{-1}\left(-\frac{1}{4}\right) + \sin^{-1}\left(-\frac{1}{4}\right)\right) =$
 - (A) $\frac{1}{3}$

(B) $\frac{4}{9}$

(C) 0

- (D) $-\frac{1}{3}$
- 5) The value of $\sin^{-1} \left(\sin \frac{5\pi}{3} \right) =$ _____
 - (A) $\frac{5\pi}{3}$

(B) $-\frac{\pi}{3}$

(C) $\frac{\pi}{3}$

(D) $\frac{2\pi}{3}$

6) $\sec^2(\tan^{-1}3) + \csc^2(\cot^{-1}3) = \underline{\hspace{1cm}}$

(A) 20

(B) 15

(C) 13

(D) 25

7) $\begin{vmatrix} \sin 35^{\circ} & -\cos 35^{\circ} \\ \sin 55^{\circ} & \cos 55^{\circ} \end{vmatrix} = \underline{\hspace{1cm}}$

- (A) 1
- **(B)** 0
- (C) -1
- (D) 2

8) If $A = \begin{bmatrix} 2x & 9 \\ -3 & -2 \end{bmatrix}$ and |A| = 3, then $x = \underline{\qquad}$; $x \in \mathbb{R}$

- (A) 7.5
- (B) 6
- (C) 15
- (D) 12

- (A) a row matrix
- (B) a column matrix
- (C) a diagonal matrix
- (D) a scalar matrix

MLA (09)

3

(P.T.O.)

10)
$$\frac{d}{dx} \left(e^{\sin^{-1} x + \cos^{-1} x} \right) = \underline{\qquad}, \left(|x| < 1 \right)$$

$$(A) \quad \frac{2}{\sqrt{1-x^2}}$$

$$(C) \quad \frac{1}{\sqrt{1-x^2}}$$

(D)
$$e^{\sin^{-1}x + \cos^{-1}x}$$

11)
$$f(x) = \begin{cases} \frac{\sin 4x}{9x}, & x \neq 0 \\ k^2, & x = 0 \end{cases}$$
 if f is continuous for $x = 0$, then

(A)
$$-\frac{3}{2}$$

(B)
$$\frac{3}{2}$$

(C)
$$\pm \frac{2}{3}$$

(D)
$$\frac{4}{9}$$

12) If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$ _____, $(t \neq 0)$

- (A) $\frac{1}{t}$
- (B) t
- (C) -t
- (D) a

 $13) \quad \frac{d}{dx} \left(\log_5 x^2 \right) = \underline{\hspace{1cm}}$

(A)
$$\frac{|_1}{(\log 5)x}$$

(B)
$$\frac{1}{x^2}$$

(C)
$$\frac{12}{(\log 5)x}$$

(D)
$$\frac{1}{(\log 5)x^2}$$

14) The derivative of $\tan^{-1} x$ with respect to $\cot^{-1} x$ is _____, $(x \in \mathbb{R})$

$$(A) -1$$

(C)
$$\frac{1}{1+x^2}$$

(D)
$$-\frac{1}{1+x^2}$$

15)
$$\int \frac{dx}{\sqrt{4-3x}} =$$
____+C.

(A)
$$-\frac{2}{3}(4+3x)^{\frac{1}{2}}$$

(B)
$$-\frac{2}{3}(4-3x)^{-\frac{1}{2}}$$

(C)
$$-\frac{2}{3}(4-3x)^{\frac{1}{2}}$$

(D)
$$\frac{2}{3}(4+3x)^{\frac{1}{2}}$$

16)
$$\int \frac{e^{5\log x} - e^{4\log x}}{e^{3\log x} - e^{2\log x}} dx = \underline{\qquad} + C$$

(A) $e^3 \log x$

(B) $e \cdot 3^{-3x}$

(C) $\frac{x^3}{3}$

- (D) $\frac{x^2}{3}$
- 17) Let A and B be two events such that P(A) = 0.4, $P(A \cup B) = 0.6$ and P(B) = p. For which choice of p, A and B are independent?
 - (A) $\frac{1}{3}$

(B) $\frac{1}{2}$

(C) $\frac{3}{4}$

- (D) $\frac{5}{6}$
- 18) If A and B are two events such that P(A) > 0 and $P(B) \ne 1$, then $P(A \mid B')$ is _____
 - (A) 1 P(A/B)
- (B) 1 P(A/B')

(C) $\frac{P(A')}{P(B)}$

- (D) 1 P(A'/B')
- 19) If parameters of a binomial distribution are n = 5 and p = 0.30, then the variance is _____
 - (A) 1.05

(B) 1.5

(C) 1.40

(D) 1.15

- 20) If the probability distribution $P(x) = C {4 \choose x}$; x = 0, 1, 2, 3, 4, then C =_____.
 - (A) 0

(B) $\frac{1}{4}$

(C) 4

- (D) $\frac{1}{16}$
- 21) The objective function of an LP problem is _____
 - (A) a function to be optimized
 - (B) a constant
 - (C) an inequality
 - (D) a quadratic equation
- 22) The corner points of the feasible region determined by the system of linear constraints are (0, 10), (5,5), (15,15), (5,25). Let z = px + qy, where p,q > 0. The condition on p and q so that the maximum of z occurs at both the points (15,15) and (5,25) is ______.
 - (A) p = 2q
 - (B) p = q
 - (C) q = 2p
 - (D) q = 3p
- 23) Approximate value of $(31)^{\frac{1}{5}}$ is _____
 - (A) $2.1_{|}$

(B) 2.01

(C) 2.0125

(D) 1.9875

24) The local minimum value of $f(x) = x^2 + 4x + 5$ is _____, $(x \in \mathbb{R})$

(A) 4

(B) 2

(C) 1

(D) -1

 $25) \int \log x \, dx = \underline{\qquad} + C$

- (A) $x \log x x$
 - (B) $x \log x + x$
 - (C) $\frac{1}{x}$
 - (D) $\log x x$

26) $\int \sqrt{16 - x^2} \, dx = \underline{\hspace{1cm}} + C$

- (A) $\frac{x}{2}\sqrt{16-x^2} + 8\sin^{-1}\frac{x}{4}$
- (B) $\frac{x}{2}\sqrt{16-x^2}+4\sin^{-1}\frac{x}{4}$
- (C) $\frac{x}{2}\sqrt{16-x^2} + 8\log\left|x + \sqrt{16-x^2}\right|$
- (D) $\frac{x}{2}\sqrt{16-x^2} + 4\log\left|x + \sqrt{16-x^2}\right|$

 $27) \quad \int e^x \left(\frac{1 + \sin x}{1 + \cos x} \right) dx = \underline{\qquad} + C.$

- (A) $e^x \cot \frac{x}{2}$
- (B) $e^x \cot x$
- (C) $e^x \tan \frac{x}{2}$
- (D) $e^{\frac{x}{2}} \tan \frac{x}{2}$

28) $\int (x^2 + 3x + 2)e^x dx = \underline{\qquad} + C$

- $(A) \quad \left(x^2 + x + 1\right)e^x$
- (B) $\left(x^2 x + 1\right)e^x$
- (C) $(x^2+x-1)e^x$
- (D) $(x^2-1)e^x$

 $29) \int_{0}^{\pi} \sin^{2}x \cos^{3}x \, dx = \underline{\hspace{1cm}}$

(A) 1

(B) 0

(C) -1

(D) π

30) The area enclosed by $y = \cos x$, $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ and the X-axis is _____

(A) 4

(B) 1

(C) 2

(D) π

MLA (09)

q

- 31) The area bounded by $y = 2x x^2$ and X axis is _____
 - (A) $\frac{2}{3}$

(B) $\frac{1}{3}$

(C) 1

- (D) $\frac{4}{3}$
- 32) The area bounded by the curves y = |x 5|, X axis and the lines x = 0, x = 1 is _____
 - (A) $\frac{7}{2}$
 - (B) $\frac{9}{2}$
 - (C) 9
 - (D) 5
- **33)** The area enclosed by y = x, y = 1, y = 3 and the Y-axis is
 - (A) $\frac{9}{2}$

(B) 2

(C) 4

- (D) $\frac{3}{2}$
- 34) The order and degree of $\frac{d^2y}{dx^2} = \sqrt[3]{1 + \left(\frac{dy}{dx}\right)^2}$ are ______
 - (A) 2,3
 - (B) 3,2
 - (C) 3, not defined
 - (D) 2, 2

35) An Integrating factor of the differential equation

 $\frac{dy}{dx} + \frac{y}{x} = x^2 \text{ is } \underline{\hspace{1cm}}$

(A) x

(B) $\frac{1}{x}$

(C) e^{x}

(D) $\log x$

36) The number of arbitrary constants in the particular solution of a differential equation of second order is _____

(A) 2

(B) 4

(C) 1

(D) = 0

37) The solution of the differential equation $2x \frac{dy}{dx} - y = 0$;

- y (1) =2 represents _____
- (A) Parabola

(B) Straight line

(C) Circle

(D) Ellipse

38) If $\overline{x} = (2, 3, \sqrt{3})$, then a unit vector in the direction of \overline{x} is _____

(A)
$$\left(\frac{1}{2}, \frac{3}{2}, \frac{\sqrt{3}}{4}\right)$$

(B)
$$\left(\frac{1}{4}, \frac{3}{4}, \frac{\sqrt{3}}{4}\right)$$

(C)
$$\left(\frac{1}{2}, \frac{3}{4}, \frac{\sqrt{3}}{4}\right)$$

(D)
$$\left(\frac{1}{4}, \frac{3}{2}, \frac{\sqrt{3}}{2}\right)$$

39) Magnitude of the projection of (-1, 2, -1) on \hat{i} is ______.

(B)
$$\frac{1}{\sqrt{6}}$$

(C) 1

(D) -1

40) If A(3,-1), B(2,3) and C(5,1), then $m \angle A = \underline{\hspace{1cm}}$

- (A) $\pi \cos^{-1} \frac{3}{\sqrt{34}}$
- (B) $\cos^{-1} \frac{3}{\sqrt{34}}$
- (C) $\sin^{-1} \frac{5}{\sqrt{34}}$

(D) $\frac{\pi}{2}$

41) If $\overline{x} \cdot \overline{y} = 0$, then $\overline{x} \times (\overline{x} \times \overline{y}) = \underline{\hspace{1cm}}$, where $|\overline{x}| = 1$

(A) \bar{x}

(B) $\overline{x} \times \overline{y}$

(C) $-\overline{y}$

(D) $\overline{y} \times \overline{x}$

42) If A(1,1,2), B(2,3,5), C(1,3,4) and D(0,1,1) are the vertices of a parallelogram ABCD, then its area is _____

- (A) 2
- (B) $\sqrt{3}$
- (C) $\frac{\sqrt{3}}{2}$
- (D) $2\sqrt{3}$

- Rough Work
- 43) The perpendicular distance from point (-1,2,-2) to plane 3x 4y + 2z + 44 = 0 is _____
 - (A) $2\sqrt{29}$

(B) $\frac{\sqrt{29}}{2}$

(C) $\sqrt{29}$

- (D) 1
- 44) If the lines $\frac{x-5}{7} = \frac{y-5}{k} = \frac{z-2}{1}$ and $\frac{x}{1} = \frac{y-3}{2} = \frac{z+1}{3}$ are perpendicular to each other; then $k = \underline{\hspace{1cm}}$
 - (A) 5

(B) 10

(C) -5

- $(D) \quad 0$
- 45) The equation of the line passing through the points (2,2,-3) and (1,3,5) is _____
 - (A) $\frac{x+1}{2} = \frac{y-1}{2} = \frac{z+8}{-3}$
 - (B) $\frac{x-2}{1} = \frac{y-2}{1} = \frac{z+3}{8}$
 - (C) $\frac{x+2}{-1} = \frac{y+2}{1} = \frac{z-3}{8}$
 - (D) $\frac{x-1}{2} = \frac{y+1}{-2} = \frac{z-8}{3}$
- 46) Plane 2x + 3y + 6z 15 = 0 makes angle of measure _____ with X-axis.
 - (A) $\sin^{\frac{1}{2}1} \frac{3}{7}$

(B) $\cos^{-1} \frac{3\sqrt{5}}{7}$

(C) $\sin^{\frac{1}{1}} \frac{2}{\sqrt{7}}$

(D) $\tan^{-1}\frac{2}{7}$

47) If $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{2}$ lies in the plane 2x - 4y + z = 7, then k =_____

- (A) 7
- (B) 6
- (C) -7
- (D) any value of $k \in \mathbb{R}$
- **48)** If $a*b = a^2 + b^2 + ab + 2$ on Z, then 4*3 =_____
 - (A) 39
 - (B) 40
 - (C) 25
 - (D) 41
- **49**) The relation $S = \{(1,1),(2,2),(3,3),(4,4),(5,5)\}$ on $\{1,2,3,4,5\}$ is _____
 - (A) reflexive only
 - (B) symmetric only
 - (C) transistive only
 - (D) an equivalence relation
- **50**) Function $f: \mathbb{R} \to \mathbb{R}$, f(x) = 5x + 7 is _____
 - (A) one one and onto
 - (B) one one but not onto
 - (C) not one one but onto
 - (D) not one one and not onto

050 (E)

(MARCH, 2019) SCIENCE STREAM (CLASS - XII)

(Part - B)

Time: 2 Hours]

IMaximum Marks: 50

Instructions:

- 1) Write in a clear legible handwriting.
- 2) There are three sections in Part B of the question paper and total 1 to 18 questions are there.
- 3) All the questions are compulsory. Internal options are given.
- 4) The numbers at right side represent the marks of the question.
- 5) Start new section on new page.
- 6) Maintain sequence.
- 7) Use of simple calculator and log table is allowed, if required.

SECTION-A

- Answer the following 1 to 8 questions as directed in the question. (Each question carries 2 marks)
 - 1) Let $A = \{1, 2, 3\}$, $B = \{1, 4, 9\}$, $f: A \rightarrow B$, $f(x) = x^2$. Find f^{-1} and verify $f^{-1} o f = I_A$, $f \circ f^{-1} = I_B$.
 - 2) Without expanding, show that 11 divides $\begin{vmatrix} 2 & 6 & 4 \\ 5 & 0 & 6 \\ 3 & 5 & 2 \end{vmatrix}$
 - 3) Find $\frac{dy}{dx}$ from $x + y = \sin(xy)$.

- 4) Let O(0,0), A(35,0), B(30,10), C(15,25) and D(0,30) be the vertices of the feasible region of LP problem. Find the maximum and minimum values of the objective function z = 300 x + 600 y.
- 5) Prove that $y = ax^3$, $x^2 + 3y^2 = b^2$ are orthogonal.

6) Find the area bounded by the parabola $y = x^2 + 2$, X - axis and the lines x = 1 and x = 2.

OR

Using Integration, find the area of the region bounded by the line 2y = -x + 8, X - axis and the lines x = 2 and x = 4.

- 7) Find a, b, c if a(1,3,2) + b(1,-5,6) + c(2,1,-2) = (4,10,-8).
- 8) Evaluate, $\int_{0}^{\frac{1}{2}} \frac{x \sin^{-1} x}{\sqrt{1-x^2}} dx$.

OR

Prove that
$$\int_{0}^{n} f(x) dx = \sum_{r=1}^{n} \int_{0}^{1} f(t+r-1) dt$$

SECTION-B

Answer the following 9 to 14 questions as directed in the question. (Each question carries 3 marks)

9) Prove that

$$\tan\left(\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}\right) + \tan\left(\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}\right) = \frac{2b}{a}$$

10) Solve:

$$\begin{vmatrix} x & 2 & 2 \\ 7 & -2 & -6 \\ 5 & 4 & 3 \end{vmatrix} + \begin{vmatrix} 7 & -2 & -6 \\ 5 & 4 & 3 \\ 1 & 5 & 6 \end{vmatrix} = \begin{vmatrix} 5 & 3 & 7 \\ 4 & 7 & -2 \\ 3 & 8 & -6 \end{vmatrix}$$

11) Probability distribution of a random variable X is as follows:

X = x	-2	-1	0	1	2
P(x)	0.2	0.1	0.3	0.3	0.1

Find

- a) E(X)
- b) V(X):
- c) E(3X+2)

OR

Three machines A,B,C produce respectively 50%, 30% and 20% of the total number of items of a factory. The percentage of defective output of these machines are 3%,4% and 5% respectively. If an item is selected at random, find the probability that the item is non-defective.

12) Find:
$$\int x\sqrt{2ax-x^2} dx$$

OR

Find: $\int \frac{\sqrt{\sin x}}{\cos x} dx$

13) Solve:
$$xy (y + 1) dy = (x^2 + 1) dx$$

14) If a line makes angles of measures α , β , γ , δ with the four diagonals of a cube prove that $\cos 2\alpha + \cos 2\beta + \cos 2\gamma + \cos 2\delta = -\frac{4}{3}$

SECTION-C

Answer the questions no. 15 to 18 as directed in the question. (Each question carries 4 marks)

C-9

- 15) $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & -3 \\ 2 & -1 & 3 \end{bmatrix}$, prove that $A^3 6A^2 + 5A + 11I_3 = 0$. Using this matrix relation, obtain A^{-1} .
- **16)** Obtain: $\int \frac{x^2}{x^2 + 7x + 10} dx$
- 17) A water tank is in the shape of an inverted cone. The radius of the base is 4m and the height is 6 m. The tank is being emptied for cleaning at the rate of 3 m³/min find the rate at which the water level will be decreasing, when the water is 3 m deep.

OR

A cylindrical can is to be made to hold 1 *l* oil. Find its radius and height to minimize the cost.

18) Prove that : $\int_{0}^{\frac{\pi}{2}} \frac{\sin^2 x}{\sin x + \cos x} dx = \frac{1}{\sqrt{2}} \log \left(\sqrt{2} + 1 \right)$

