ICSE Class 10 Maths Important Questions and Solutions

Question 1

Ben deposits a certain sum of money each month in a recurring deposit account of a bank. If the rate of interest is 8% per annum and Ben gets Rs. 8,088 from the bank after 3 years, find the value of his monthly instalment.

Solution:

Let P be the monthly instalment.
Given,
Rate of interest $=r=8 \%$
Time $=\mathrm{n}=36$ (i.e. 3 years)
Maturity value at the end of 3 years $=$ Rs. 8088
$\mathrm{SI}=\mathrm{P} \times[\mathrm{n}(\mathrm{n}+1) /(2 \times 12)] \times(\mathrm{r} / 100)$
$=\mathrm{P} \times[36(36+1) / 24] \times(8 / 100)$
$=\mathrm{P} \times(3 \times 37 / 2) \times(2 / 25)$
$=\mathrm{P} \times(3 \times 37) / 25$
$=4.44 \mathrm{P}$
Total amount at the time of maturity $=(\mathrm{P} \times \mathrm{n})+\mathrm{SI}$
$8088=36 \mathrm{P}+4.44 \mathrm{P}$
$8088=40.44 \mathrm{P}$
$\mathrm{P}=8088 / 40.44$
$\mathrm{P}=200$
Therefore, the monthly instalment is Rs. 200.

Question 2

A bag contains 5 white balls, 6 red balls and 9 green balls. A ball is drawn at random from the bag. Find the probability that the ball drawn is:
(i) a green ball
(ii) a white or a red ball
(iii) neither a green ball nor a white ball

Solution:

Given,
A bag contains 5 white balls, 6 red balls and 9 green balls.
Total number of outcomes $=n(S)=5+6+9=20$
(i) Let A be the event of getting a green ball.

Number of outcomes favourable to $A=n(A)=9$
$\mathrm{P}(\mathrm{A})=\mathrm{n}(\mathrm{A}) / \mathrm{n}(\mathrm{S})$
= 9/20
(ii) Let B be the event of getting a white or a red ball.

Number of outcomes favourable to $B=n(B)=11$
i.e. $5($ white $)+6(\mathrm{red})=11$ balls
$\mathrm{P}(\mathrm{B})=\mathrm{n}(\mathrm{B}) / \mathrm{n}(\mathrm{S})$
$=11 / 20$
(iii) Let C be the event of getting neither a green ball nor a white ball.

Number of outcomes favourable to $\mathrm{C}=\mathrm{n}(\mathrm{C})=6$
i.e. Total number of balls $-($ green + white balls $)=20-(9+5)=6$
$\mathrm{P}(\mathrm{C})=\mathrm{n}(\mathrm{C}) / \mathrm{n}(\mathrm{S})$
$=6 / 20$
$=3 / 10$

Question 3

Find the minimum length in cm and correct to the nearest whole number of a thin metal sheet required to make a hollow and closed cylindrical box of diameter 20 cm and height 35 cm . The width of the metal sheet is 1 m . Also, find the cost of the sheet at the rate of Rs. 56 per m . Find the area of the metal sheet required if 10% of it is wasted in cutting, overlapping etc.

Solution:

Given,
Diameter of hollow and close cylinder $=20 \mathrm{~cm}$
Radius of the cylinder $=r=20 / 2=10 \mathrm{~cm}$
Height of cylinder $=\mathrm{h}=35 \mathrm{~cm}$
Total surface area of the cylinder $=2 \pi \mathrm{r}(\mathrm{r}+\mathrm{h})$
$=2 \times(22 / 7) \times 10 \times(10+35)$
$=(44 / 7) \times 10 \times 45$
$=2828.57 \mathrm{~cm}^{2}$
$=0.282 \mathrm{~m}^{2}$
Width of the sheet $=1 \mathrm{~m}$
Cost of sheet per $\mathrm{m}=$ Rs. 56
Total cost of the sheet $=0.282 \times$ Rs. $56=$ Rs. 15.8
Length of the sheet $=$ Area of sheet/ Width of the sheet
$=0.282 / 1=0.282 \mathrm{~m}=28.2 \mathrm{~cm}$
Area of the metal sheet required if 10% of it is wasted in cutting, overlapping etc.,
$=2828.57+10 \%$ of 2828.57
$=2828.37+282.8$
$=3111.57 \mathrm{~cm}^{2}$

Question 4

Geetha repays her total loan of $1,18,000$ by paying instalments every month. If the instalment for the first month is 1,000 and it increases by 100 every month, what amount will she pay as the 30 th instalment of the loan? What amount of the loan has she to still pay after the 30th instalment?

Solution:

Total loan amount $=$ Rs. $1,18,000$
First instalment = Rs. 1000
Second instalment $=$ Rs. $1000+$ Rs. $100=$ Rs. 1100
Third instalment = Rs. $1100+$ Rs. $100=$ Rs. 1200
This is an AP with $\mathrm{a}=1000$ and $\mathrm{d}=100$
nth term of an Ap:
an $=a+(n-1) d$
$\mathrm{a}_{30}=1000+(30-1) \times 100$
$=1000+29 \times 100$
$=1000+2900$
$=3900$
Therefore, the amount paid in the 30th instalment is Rs. 3900.

Sum of first n term of an AP:
$S_{n}=n / 2\left[a+a_{n}\right]$
$S_{30}=(30 / 2) \times(1000+3900)$
$=15 \times 4900$
$=73500$
Therefore, the amount paid in 30 instalments is Rs. 73,500
Loan amount to be paid after 30th instalment $=$ Total loan amount - Amount paid in 30 instalments
=Rs. 1,18,000-Rs. 73,500
$=$ Rs. 44,500

Question 5

In the given figure, $A D$ is a diameter. O is the centre of the circle. $A D$ is parallel to $B C$ and $\angle C B D=32^{\circ}$.

Find:
(i) $\angle \mathrm{OBD}$
(ii) $\angle A O B$
(iii) $\angle B E D$

Solution:

Given,
AD is a diameter of the circle with centre O .
$A D$ is parallel to $B C$ and $\angle C B D=32^{\circ}$.
From the given figure,
$\mathrm{AD} \| \mathrm{BC}$
(i) $\angle \mathrm{ODB}=\angle \mathrm{CBD}$ (alternate interior angles)
$\mathrm{OB}=\mathrm{OD}$ (radii of the same circle)
$\angle \mathrm{OBD}=\angle \mathrm{ODB}=32^{\circ}$
(ii) AD is the diameter.

We know that the angle in a semicircle is 90°.
$\angle A B D=90^{\circ}$
And
$\angle A B O=\angle A B D-\angle O B D$
$=90^{\circ}-32^{\circ}$
$=58^{\circ}$
$\angle \mathrm{ABO}=58^{\circ}$
Also, the angles opposite to the equal sides are equal.
$\angle O A B=\angle O B A=58^{\circ}(O A=O B)$
In triangle AOB,
$\angle O A B+\angle A O B+\angle O B A=180$
$58^{\circ}+\angle A O B+58^{\circ}=180^{\circ}$
$\angle A O B=180^{\circ}-58^{\circ}-58^{\circ}$
$\angle A O B=64^{\circ}$
(iii) Angles in the same segment are equal.
$\angle B E D=\angle B A D=58^{\circ}$

Question 6

Prove that:
$\frac{1}{(\sec \theta-\tan \theta)}-\frac{1}{\cos \theta}=\frac{1}{\cos \theta}-\frac{1}{(\sec \theta+\tan \theta)}$.

Solution:

LHS $=[1 /(\sec \theta-\tan \theta)]-(1 / \cos \theta)$
Using the identity $\sec ^{2} \mathrm{~A}-\tan ^{2} \mathrm{~A}=1$,
$=\left[\left(\sec ^{2} \theta-\tan ^{2} \theta\right) /(\sec \theta-\tan \theta)\right]-\sec \theta$
$=[(\sec \theta+\tan \theta)(\sec \theta-\tan \theta) /(\sec \theta-\tan \theta)]-\sec \theta$
$=\sec \theta+\tan \theta-\sec \theta$
$=\tan \theta \ldots$... i)
RHS $=(1 / \cos \theta)-[1 /(\sec \theta+\tan \theta)]$
$=\sec \theta-\left[\left(\sec ^{2} \theta-\tan ^{2} \theta\right) /(\sec \theta+\tan \theta)\right]$
$=\sec \theta-[(\sec \theta+\tan \theta)(\sec \theta-\tan \theta) /(\sec \theta+\tan \theta)]$
$=\sec \theta-\sec \theta+\tan \theta$
$=\tan \theta \ldots$...(ii)
From (i) and (ii),
LHS = RHS
Hence proved.

Question 7

Prove by factor theorem that
(i) $(x-2)$ is a factor of $2 x^{3}-x^{2}-7 x+2$
(ii) $(2 x+1)$ is a factor of $4 x^{3}+12 x^{2}+7 x+1$
(iii) $(3 x-2)$ is a factor of $18 x^{3}-3 x^{2}+6 x-8$

Solution:

(i) Let $\mathrm{p}(\mathrm{x})=2 \mathrm{x}^{3}-\mathrm{x}^{2}-7 \mathrm{x}+2$

For checking $(\mathrm{x}-2)$ is a factor of $\mathrm{p}(\mathrm{x})$, substitute $\mathrm{x}=2$ in $\mathrm{p}(\mathrm{x})$.
$\mathrm{p}(2)=2(2)^{3}-(2)^{2}-7(2)+2$
$=2(8)-4-14+2$
$=16-18+2$
$=0$
Therefore, $(x-2)$ is a factor of $2 x^{3}-x^{2}-7 x+2$.
(ii) Let $\mathrm{p}(\mathrm{x})=4 \mathrm{x}^{3}+12 \mathrm{x}^{2}+7 \mathrm{x}+1$

For checking $(2 \mathrm{x}+1)$ is a factor of $\mathrm{p}(\mathrm{x})$, substitute $\mathrm{x}=-1 / 2$ in $\mathrm{p}(\mathrm{x})$.
$p(-1 / 2)=4(-1 / 2)^{3}+12(-1 / 2)^{2}+7(-1 / 2)+1$
$=4(-1 / 8)+12(1 / 4)-(7 / 2)+1$
$=(-1 / 2)+3-(7 / 2)+1$
$=(-8 / 2)+4$
$=-4+4$
$=0$
Therefore, $(2 x+1)$ is a factor of $4 x^{3}+12 x^{2}+7 x+1$.
(iii) Let $\mathrm{p}(\mathrm{x})=18 \mathrm{x}^{3}-3 \mathrm{x}^{2}+6 \mathrm{x}-8$

For checking $(3 x-2)$ is a factor of $p(x)$, substitute $x=2 / 3$ in $p(x)$.
$\mathrm{p}(2 / 3)=18(2 / 3)^{3}-3(2 / 3)^{2}+6(2 / 3)-12$
$=18(8 / 27)-3(4 / 9)+4-8$
$=(16 / 3)-(4 / 3)-4$
$=(12 / 3)-4$
$=4-4$
$=0$

Question 8

Draw an Ogive for the following distribution:

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Frequency	6	10	18	22	20	15	6	3

Find the median and interquartile range from the obtained ogive.
Solution:
Cumulative frequency distribution table:

Class	Frequency	Cumulative frequency
$0-10$	6	6
$10-20$	10	16
$20-30$	18	34
$30-40$	22	56
$40-50$	20	76
$50-60$	15	91
$60-70$	6	97
$70-80$	3	100

$\mathrm{N} / 2=100 / 2$
Ogive:

Median $=37$
Lower quartile $=(\mathrm{N} / 4)$ th observation $=(100 / 4)=25$ th observation $=25$
Upper quartile $=(3 \mathrm{~N} / 4)$ th observation $=(300 / 4)=75$ th observation $=49$
Interquartile range $=$ Upper quartile - Lower quartile
$=49-25$
$=24$

Question 9

Solve the following inequation.
$-22 / 3 \leq x+(1 / 3)<3+(1 / 3), x \in R$
Represent the solution set on the number line.

Solution:

$-22 / 3 \leq x+(1 / 3)<3+(1 / 3)$
$-(8 / 3) \leq x+(1 / 3)<(10 / 3)$
$(-8 / 3)-(1 / 3) \leq x<(10 / 3)-(1 / 3)$
$-9 / 3 \leq x<9 / 3$
$-3 \leq x<3$

The open circle at 3 indicates that 3 is not included in the solution set.

Question 10

In the given figure. line AB meets the y -axis at point A . The line through $\mathrm{C}(2,10)$ and D intersects line AB at a right angle at point P. Find:
(i) equation of line AB
(ii) equation of line CD
(iii) coordinates of points E and D

Solution:

From the given figure,
$\mathrm{A}=(0,6)$
$B=(-6,8)$
$\mathrm{C}=(2,10)$
(i) Slope of line $\mathrm{AB}=(8-6) /(-6-0)=-2 / 6=-1 / 3$
i.e. $m=-1 / 3$
y-intercept of the line $A B=6$
Equation of the line in slope intercept form is $y=m x+c$
$y=(-1 / 3) x+6$
$y=(-x+18) / 3$
$3 y=-x+18$
$x+3 y-18=0$
(ii) Given,

AB and CD interest at right angles.
Slope of $A B \times$ Slope of $C D=-1$
$(-1 / 3) \times$ Slope of $\mathrm{CD}=-1$
Slope of $\mathrm{CD}=-1 \times(-3 / 1)=3$
Equation of line with slope 3 and passing through the point $\mathrm{C}(2,10)$ is:
$\mathrm{y}-10=3(\mathrm{x}-2)$
$y-10=3 x-6$
$3 \mathrm{x}-6-\mathrm{y}+10=0$
$3 x-y+4=0$
Therefore, the equation of line $C D$ is $3 x-y+4=0$.
(iii) Point E lies on the line AB and on the $\mathrm{x}-$ axis.

The y-coordinate of E is 0 .
Let the coordinates of E be $(\mathrm{x}, 0)$.
Substituting $\mathrm{E}(\mathrm{x}, 0)$ in the equation of line AB .
$\mathrm{x}+3(0)-18=0$
$\mathrm{x}=18$
Thus, $\mathrm{E}=(18,0)$
Similarly,
y-coordinate of D is 0 .

Substituting D in the equation of line CD.
$3 \mathrm{x}-0+4=0$
$3 x=-4$
$x=-4 / 3$
Therefore, the coordinates of D are $(-4 / 3,0)$.

Question 11

Find a GP for which the sum of the first two terms is -4 and the fifth term is 4 times the third term.

Solution:

Let a be the first term and r be the common ratio of a GP.
nth term of a GP $=a_{n}=a r^{n-1}$
Given,
$a_{1}+a_{2}=-4$
$a+a r=-4$
$a(1+r)=-4 \ldots .(i)$
And
$a^{5}=4 a^{3}$
$\operatorname{ar}^{(5-1)}=4 \times \operatorname{ar}^{(3-1)}$
$\mathrm{r}^{4}=4 \mathrm{r}^{2}$
$\mathrm{r}^{2}=4$
$\mathrm{r}= \pm 2$
When $r=2$,
$\mathrm{a}(1+2)=-4$ [From (i)]
$3 a=-4$
$a=-4 / 3$
ar $=(-4 / 3) \times 2=-8 / 3$
$\operatorname{ar}^{2}=(-4 / 3) \times(2)^{2}=-16 / 3$
When $r=-2$,
$a(1-2)=-4$
$-a=-4$
$\mathrm{a}=4$
ar $=4(-2)=-8$
$\mathrm{ar}^{2}=4(-2)^{2}=4 \times 4=16$
Therefore, the required GP is $-4 / 3,-8 / 3,-16 / 3, \ldots$. Or $4,-8,16, \ldots$.

Question 12

A man invests a certain sum on buying 15% Rs. 100 shares at 20% premium. Find:
(i) His income from one share
(ii) The number of shares bought to have an income from the dividend as Rs. 6480
(iii) The sum invested.

Solution:

(i) Dividend on one share $=15 \%$ of Rs. 100
$=(15 / 100) \times$ Rs. 100
$=$ Rs. 15
Therefore, the income from one share is Rs. 15.
(ii) The number of shares bought to have an income from the dividend as Rs. 6480
= Annual income/ Dividend on one share
$=6480 / 15$
= Rs. 432
(iii) Given that the man bought shares of Rs 100 at 20% premium, the market value of one share
$=(120 / 100) \times$ Rs. 100
$=$ Rs. 120
Total investment $=$ Number of shares \times Market value of one share
$=432 \times$ Rs. 120
$=$ Rs. 51,840

Question 13

Attempt this question on a graph paper.
(i) Plot A $(3,2)$ and $\mathrm{B}(5,4)$ on a graph paper. Take $2 \mathrm{~cm}=1$ unit on both axes.
(ii) Reflect A and B in the x -axis to A^{\prime} and B^{\prime}, respectively. Plot these points also on the same graph paper.
(iii) Write down:
(a) the geometrical name of the figure $\mathrm{ABB}^{\prime} \mathrm{A}^{\prime}$
(b) the measure of angle ABB'
(c) the image of $\mathrm{A}^{\prime \prime}$ of A when A is reflected in the origin
(d) the single transformation that maps A^{\prime} to $\mathrm{A}^{\prime \prime}$.

Solution:

Given,
A $(3,2)$ and $B(5,4)$
A^{\prime} and B^{\prime} are the reflections of A and B respectively in the x-axis.
$A^{\prime \prime}$ is the image of A when A is reflected in the origin.
(i)

(ii) Coordinates of $\mathrm{A}^{\prime}(3,-2)$ and the coordinates of $\mathrm{B}^{\prime}(5,-4)$.
(iii)
(a) $\mathrm{ABB}^{\prime} \mathrm{A}^{\prime}$ is an isosceles trapezium.
(b) The measure of angle $A B B^{\prime}$ is 45°.
(c) Coordinates of $\mathrm{A}^{\prime \prime}=(-3,-2)$
(d) Single transformation that maps A^{\prime} to $A^{\prime \prime}$ is the reflection in the y-axis.

Question 14

A school has 630 students. The ratio of the number of boys to the number of girls is $3: 2$. This ratio changes to 7 : 5 after the admission of 90 new students. Find the number of newly admitted boys.

Solution:

Given,
Total number of students $=630$
The ratio of the number of boys to the number of girls is $3: 2$.
Let $3 x$ be the number of boys and $2 x$ be the number of girls.
$\Rightarrow 3 x+2 x=630$
$5 x=630$
$x=630 / 5$
$\mathrm{x}=126$
Number of boys $=3 \mathrm{x}=3 \times 126=378$
Number of girls $=2 \mathrm{x}=2 \times 126=252$
After admission of 90 new students, the ratio of boys to girls is $7: 5$. (given)
Total number of students $=630+90=720$
Let $7 x$ be the number of boys and $5 x$ be the number of girls.
$\Rightarrow 7 x+5 x=720$
$12 \mathrm{x}=720$
$\mathrm{x}=720 / 12$
$\mathrm{x}=60$
The number of boys $=7 \mathrm{x}=7 \times 60=420$
The number of girls $=5 \mathrm{x}=5 \times 60=300$
Therefore, the number of newly admitted boys $=420-378=42$

Question 15

Prove:

$$
\frac{1+\sin A}{\cos A}+\frac{\cos A}{1+\sin A}=2 \sec A
$$

Solution:

LHS $=[(1+\sin \mathrm{A}) / \cos \mathrm{A}]+[\cos \mathrm{A} /(1+\sin \mathrm{A})]$
$=\left[(1+\sin \mathrm{A})^{2}+\cos ^{2} \mathrm{~A}\right] /[(1+\sin \mathrm{A}) \cos \mathrm{A}]$
$=\left[1+\sin ^{2} \mathrm{~A}+2 \sin \mathrm{~A}+\cos ^{2} \mathrm{~A}\right] /[(1+\sin \mathrm{A}) \cos \mathrm{A}]$
$=(1+1+2 \sin \mathrm{~A}) /[(1+\sin \mathrm{A}) \cos \mathrm{A}]$
$=(2+2 \sin \mathrm{~A}) /[(1+\sin \mathrm{A}) \cos \mathrm{A}]$
$=[2(1+\sin \mathrm{A})] /[(1+\sin \mathrm{A}) \cos \mathrm{A}]$
$=2 / \cos \mathrm{A}$
$=2 \sec \mathrm{~A}$
= RHS
Hence proved.

Question 16

Solve for x using the quadratic formula. Write your answer correct to the two significant figures. ($\mathrm{x}-1)^{2}-3 \mathrm{x}+4$ $=0$

Solution:

Given,
$(x-1)^{2}-3 x+4=0$
$\mathrm{x}^{2}+1-2 \mathrm{x}-3 \mathrm{x}+4=0$
$x^{2}-5 x+5=0$
Comparing with the standard form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$,
$\mathrm{a}=1, \mathrm{~b}=-5, \mathrm{c}=5$
Using quadratic formula,
$x=\left[-b \pm \sqrt{\left(b^{2}-4 a c\right)}\right] / 2 a$
$=\left[-(-5) \pm \sqrt{ }\left\{(-5)^{2}-4(1)(5)\right\}\right] / 2(1)$
$=[5 \pm \sqrt{ }(25-20)] / 2$
$=(5 \pm \sqrt{ } 5) / 2$
$=(5 \pm 2.24) / 2$
$\mathrm{x}=(5+2.24) / 2, \mathrm{x}=(5-2.24) / 2$
$x=7.24 / 2, x=2.76 / 2$
$\mathrm{x}=3.62, \mathrm{x}=1.38$

Question 17

In the given figure, $\mathrm{DE} \| \mathrm{BC}, \mathrm{AE}=15 \mathrm{~cm}, \mathrm{EC}=9 \mathrm{~cm}, \mathrm{NC}=6 \mathrm{~cm}$ and $\mathrm{BN}=24 \mathrm{~cm}$. Find the lengths of ME and DM.

Solution:

Given,
$\mathrm{DE} \| \mathrm{BC}, \mathrm{AE}=15 \mathrm{~cm}, \mathrm{EC}=9 \mathrm{~cm}, \mathrm{NC}=6 \mathrm{~cm}$ and $\mathrm{BN}=24 \mathrm{~cm}$.
From the given figure,
ME || NC
In \triangle AME and $\triangle \mathrm{ANC}$,
$\angle A M E=\angle A N C$
$\angle \mathrm{MAE}=\angle \mathrm{NAC}$ (common angle)
By AA similarity criterion,
$\triangle \mathrm{AME} \sim \triangle \mathrm{ANC}$
We know that the corresponding sides of similar triangles are proportional.
$\mathrm{ME} / \mathrm{NC}=\mathrm{AE} / \mathrm{AC}$
ME/ $6=15 / 24$
$\mathrm{ME}=3.75 \mathrm{~cm}$
In $\triangle \mathrm{ADM}$ and $\triangle \mathrm{ABN}$,
$\angle A D M=\angle A B N(D E| | B C$ so, DM || BN)
$\angle \mathrm{DAM}=\angle \mathrm{BAN}$ (common angle)
By AA similarity criterion,
$\triangle \mathrm{ADM} \sim \triangle \mathrm{ABN}$
In $\triangle \mathrm{ADE}$ and $\triangle \mathrm{ABC}$,
$\angle A D E=\angle A B C$ (since $D E \| B C$ so, $M E|\mid N C$)
$\angle A E D=\angle A C B$
By AA similarity criterion,
$\triangle A D E \sim \triangle A B C$
$\triangle \mathrm{ADE} \sim \triangle \mathrm{ABC}$ (proved above)
$\Rightarrow A D / A B=A E / A C=15 / 24 \ldots$ (i)

The Learning App
$\triangle \mathrm{ADM} \sim \triangle \mathrm{ABN}$ (proved above)
$\Rightarrow D M / B N=A D / A B=15 / 24$ [From (i)]
DM/24 $=15 / 24$
DM $=15 \mathrm{~cm}$
Therefore, $\mathrm{ME}=3.75 \mathrm{~cm}$ and $\mathrm{DM}=15 \mathrm{~cm}$.

Question 18

One pipe can fill a cistern in 3 hours less than the other. The two pipes together can fill the cistern in 6 hours 40 minutes. Find the time that each pipe will take to fill the cistern.

Solution:

Let one pipe fill the cistern in x hours and the other fills the cistern in $(x-3)$ hours.
Given,
The two pipes together can fill the cistern in 6 hours 40 minutes.
i.e. $62 / 3$ hours $=20 / 3$ hours
$\Rightarrow(1 / x)+[1 /(x-3)]=3 / 20$
$\Rightarrow(x-3+x) /[x(x-3)]=3 / 20$
$\Rightarrow(2 x-3) /\left(x^{2}-3 x\right)=3 / 20$
$\Rightarrow 20(2 x-3)=3\left(x^{2}-3 x\right)$
$\Rightarrow 40 \mathrm{x}-60=3 \mathrm{x}^{2}-9 \mathrm{x}$
$\Rightarrow 3 x^{2}-9 x-40 \mathrm{x}+60=0$
$\Rightarrow 3 x^{2}-49 x+60=0$
$\Rightarrow 3 x^{2}-45 x-4 x+60=0$
$\Rightarrow 3 \mathrm{x}(\mathrm{x}-15)-4(\mathrm{x}-15)=0$
$\Rightarrow(3 x-4)(x-15)=0$
$\Rightarrow 3 \mathrm{x}-4=0, \mathrm{x}-15=0$
$\Rightarrow x=4 / 3, x=15$
Now,
$x-3=(4 / 3)-3=-5 / 4$ (not possible)
Therefore, $\mathrm{x}=15$
$\mathrm{x}-3=15-3=12$
Hence, one pipe can fill the cistern in 15 hours and other in 12 hours.

Question 19

A circus tent is in the shape of a cylinder surmounted by a conical top of the same diameter. If their common diameter is 56 m , the height of the cylindrical part is 6 m and the total height of the tent above the ground is 27 m . Find the area of the canvas used in making the tent.

Solution:

Given,
Total height of the tent $=27 \mathrm{~m}$
Diameter of the circular bases $=56 \mathrm{~m}$
Radius of cylinder $=$ Radius of conical top $=r=56 / 2=28 \mathrm{~m}$
Height of the cylinder $=\mathrm{h}=6 \mathrm{~m}$
Height of the conical part $=\mathrm{H}=27-\mathrm{h}=27-6=21 \mathrm{~m}$
Slant height of the conical part $=\sqrt{ }\left(r^{2}+h^{2}\right)$
$\mathrm{I}=\sqrt{ }\left[(28)^{2}+(21)^{2}\right]$
$=\sqrt{ }(784+441)$
$=\sqrt{ } 1225$
$=35 \mathrm{~m}$

Area of the canvas used $=$ CSA of cylinder + CSA of cone
$=2 \pi \mathrm{rh}+\pi \mathrm{rl}$
$=\pi \mathrm{r}(2 \mathrm{~h}+1)$
$=(22 / 7) \times 28 \times(2 \times 6+35)$
$=22 \times 4 \times(12+35)$
$=88 \times 47$
$=4136 \mathrm{~m}^{2}$
Therefore, the area of the canvas used in making the tent is $4136 \mathrm{~m}^{2}$.

Question 20

Ankit deposits Rs 2,250 per month in a recurring deposit account for a period of 3 years. At the time of maturity, he will get Rs 90,990.
(i) Find the rate of simple interest per annum
(ii) Find the total interest earned by Ankit.

Solution:

Given,
Monthly instalment $=\mathrm{P}=$ Rs. 2250
Time $=\mathrm{n}=36$ months (i.e. 3 years)
Amount at the time of maturity $=$ Rs. 90,990
Let r be the rate of interest.
Total amount deposited $=$ Rs. $2250 \times 36=$ Rs. 81,000
Interest $=$ Amount at the time of maturity - Total amount deposited
$=$ Rs. 90,990 - Rs. 81,000
= Rs. 9990
$\mathrm{SI}=\mathrm{P} \times[\mathrm{n}(\mathrm{n}+1) /(2 \times 12)] \times(\mathrm{r} / 100)$
$9990=2250 \times(36 \times 37 / 24) \times(\mathrm{r} / 100)$
$9990=2250 \times(3 \times 37) \times(\mathrm{r} / 200)$
$r=(9990 \times 200) /(2250 \times 3 \times 37)$
r = 8
Therefore, the rate of interest is 8% and the total interest earned by Ankit is Rs. 9990.

Question 21

Ms. Kumar has an account in ICICI Bank. Entries of his passbook has given below:

Date, 2008	Particulars	Withdrawals (in Rs.)	Deposits (in Rs.)	Balance (in Rs.)
Jan 3	B/F	-	-	2642
Jan 16	To self	640	-	2002
March 4	By cash	-	850	2852
April 10	To self	1130	-	1722
April 25	By cheque	-	650	2372
June 15	By cash	577	-	1795

BYJU'S
The Learning App
Calculate the total amount received by Kumar if he closes his account on August 1, 2008 and the rate of interest is 5% per annum.

Solution:

Qualifying amount on monthly basis:
$\mathrm{Jan}=2002$
$\mathrm{Feb}=2002$
March $=2852$
April $=1722$
May $=2372$
June $=1795$
July $=1795$
Total = Rs. 14540
Let principal amount for one month = Rs. 14540
Rate of interest $=5 \%$
Interest $=(14540 \times 1 \times 5) /(12 \times 100)$
$=$ Rs. 60.58
The total amount received by Kumar if he closes his account on August 1, 2008
= Balance at the end of July + Interest earned from Jan to July
= Rs. 1795 + Rs. 60.58
$=$ Rs. 1855.58

