

1. The bond dissociation energy of B−F in BF₃ is 646 kJ mol⁻¹ whereas that of C−F in CF₄ is 515 kJ mol⁻

¹. The correct reason for higher B–F bond dissociation energy as compared to that of C–F is

(1) Significant $p\pi$ - $p\pi$ interaction between B and F in BF₃ whereas there is no possibility of such interaction between C and F in CF₄.

(2) Lower degree of $p\pi - p\pi$ interaction between B and F in BF₃ than that

between C and F in CF₄

- (3) Smaller size of B-atom as compared to that of C-atom
- (4) Stronger bond between B and F in BF₃ as compared to that between C and F in CF₄.

Solution:

Because of $p\pi - p\pi$ back bonding in BF₃ molecule, all B-F bond having partial double bond character. Hence option (1) is the answer.

2. Among the following species which two have trigonal bipyramidal shape ?

- (1) NI₃ (2) I₃⁻ (3) SO₃²⁻ (4) NO₃⁻
- (1) II and III
- (2) III and IV
- (3) I and IV
- (4) I and III

Solution:

Let us find the hybridization (H) and shape of given species.

(1) For NI₃, H = $\frac{1}{2}$ (5+3) = 8/2 = 4 \rightarrow sp³ hybridized state. It is trigonal pyramidal in shape.

(2) For I_3^- , $H = \frac{1}{2} (7+2+1) = \frac{10}{2} = 5 \rightarrow sp^3 d$ hybridized state. It is linear in shape.

(3) For $SO_3^{2^-}$, $H = \frac{1}{2}(6+2) = \frac{8}{2} = 4 \rightarrow sp^3$ hybridized state. It is trigonal pyramidal in shape. (4) For NO_3^{-} , $H = \frac{1}{2}(5+1) = \frac{6}{2} = 3 \rightarrow sp^2$ hybridized state. It is trigonal planar in shape. Hence option (4) is the answer.

3. Using MO theory, predict which of the following species has the shortest bond length?

- (1) O₂⁻
- (2) O₂²⁻
- (3) O₂²⁺
- (4) O₂⁺

Solution:

Chemical species	O2 ⁻	O ₂ ²⁻	O ₂ ²⁺	O ₂ +
Bond order	1.5	1	3	2.5

Therefore bond length order $O_2^{2-} > O_2^{-} > O_2^{+} > O_2^{2+}$

Hence option (3) is the answer.

4. Among the following, the species having the smallest bond is :

- (1) NO
- (2) NO⁺
- (3) O₂
- (4) NO⁻

Solution:

Larger the bond order, smaller the bond length. NO⁺ has bond order 3. Hence option (2) is the answer.

5. The hybridisation of orbitals of N atom in NO₃, NO₂⁺, NH₄⁺ are respectively:

(1) sp², sp³, sp
 (2) sp, sp³, sp²
 (3) sp, sp², sp³
 (4) sp², sp, sp³

Solution:

In NO₃, the central N atom has 3 bonding domains and zero lone pairs of electrons. In NO₂, the central N atom has 2 bonding domains and zero lone pairs of electrons. In NH₄, the central N atom has 4 bonding domains and zero lone pairs of electrons. The Hybridization of N atom in NO₃⁻, NO₂⁺, NH₄⁺ are sp², sp, sp³ respectively. Hence option (4) is the answer.

6. Based on lattice energy and other considerations, which one of the following alkali metal chloride is expected to have the highest melting point?

- (1) RbCl
- (2) LiCl
- (3) KCl
- (4) NaCl

Solution:

NaCl has the highest melting point. Hence option (4) is the answer.

7. The structure of IF₇ is :

- (1) octahedral
- (2) pentagonal bipyramid
- (3) square pyramid
- (4) trigonal bipyramid

Solution:

For IF₇, hybridisation - sp^3d^3 . Shape is pentagonal bipyramidal. Hence option (2) is the answer.

8. Which of the following has the square planar structure :

- (1) NH4⁺
- (2) CCl₄
- (3) XeF₄
- (4) BF4⁻

Solution:

Hybridization of XeF₄ sp³d² It has square planar shape. Hence option (3) is the answer.

9. Among the following the maximum covalent character is shown by the compound :

- (1) AICI₃
- (2) MgCl₂
- (3) FeCl₂
- (4) SnCl₂

Solution:

Al⁺³ is having highest polarizing power than other compounds having greater covalent character. Hence option (1) is the answer.

10. The compound of Xenon with zero dipole moment is :

- (1) XeO₃
- (2) XeO₂
- (3) XeF₄
- (4) XeOF₄

Solution:

XeF₄ has dipole moment zero. Hence option (3) is the answer.

11. Which of the following has maximum number of lone pairs associated with Xe?

- (1) XeO3
- (2) XeF₄
- (3) XeF₆
- (4) XeF₂

Solution:

 XeO_3 has 1 lone pair of electrons. XeF_4 has 2 lone pairs of electrons. XeF_6 has 1 lone pair of electrons. XeF_2 has 3 lone pairs of electrons. XeF_2 has maximum number of lone pairs of electrons. Hence option (4) is the answer.

12. Among the following the molecule with the lowest dipole moment is :

- (1) CHCl₃
- (2) CH_2CI_2
- (3) CCl₄
- (4) CH₃Cl

Solution:

The order of the dipole moment is $CCl_4 < CHCl_3 < CH_2Cl_2 < CH_3Cl$. So CCl_4 has the lowest dipole moment. Hence option (3) is the answer.

13. The number of types of bonds between two carbon atoms in calcium carbide is

- (1) One sigma, two pi
- (2) One sigma, one pi
- (3) Two sigma, one pi
- (4) Two sigma, two pi

Solution:

 $CaC_2 \rightarrow Ca^{+2} + C_2^{2^-}$ •C ≡ C⁻ Number of sigma bond is 1 and number of pi bond is 2. Hence option (1) is the answer.

14. The formation of molecular complex BF₃ - NH₃ results in a change in hybridisation of boron

- (1) From sp³ to sp³d
 (2) From sp² to dsp²
- (3) From sp³ to sp²
- (4) From sp² to sp³

Solution:

In BF₃, Boron atom has 3 bond pairs of electrons and 0 lone pairs of electrons. It is sp² hybridized. In $F_3B \leftarrow NH_3$, Boron atom has 4 bond pairs of electrons and 0 lone pairs of electrons. It is sp³ hybridized. So the formation of molecular complex results in a change in hybridization of boron from sp² to sp³. Hence option (4) is the answer.

15. The molecule having smallest bond angle is :

- (1) PCI₃
- (2) NCl₃
- (3) AsCl₃
- (4) SbCl₃

Solution:

Bond angle order $NCl_3 > PCl_3 > AsCl_3 > SbCl_3$. Hence option (4) is the answer.

16. In which of the following pairs the two species are not isostructural?

- (1) AIF_6^{3-} and SF_6
- (2) CO_3^{2-} and NO_3^{-}
- (3) PCl₄⁺ and SiCl₄
- (4) PF_5 and BrF_5

Solution:

 PF_5 has trigonal bipyramidal shape. BrF_5 has square pyramidal shape. Hence option (4) is the answer.

17. Which one of the following molecules is expected to exhibit diamagnetic behaviour ?

- (1) C₂
- (2) N₂
- (3) O₂
- (4) S₂

Solution:

C₂ and N₂ have no unpaired electron. So they exhibit diamagnetic behaviour.

18. Which of the following is the wrong statement?

- (1) ONCl and ONO⁻ are not isoelectronic
- (2) O₃ molecule is bent
- (3) Ozone is violet-black in solid state
- (4) Ozone is diamagnetic gas

Solution:

In the given options all are correct statements.

19. Stability of the species Li_2 , Li_2^- and Li_2^+ increases in the order of :

(1) $Li_2 < Li_2^+ < Li_2^-$ (2) $Li_2^- < Li_2^+ < Li_2$ (3) $Li_2 < Li_2 < Li_2^+$ (4) $Li_2^- < Li_2 < Li_2^+$

Solution:

Bond order of Li_2 is 1. Bond order of Li_2^+ is 0.5. Bond order of Li_2^- is 0.5. Stability will depend on the bond order. Li_2^+ is more stable than Li_2^- because the higher interelectronic repulsion in Li_2^- makes it least stable. So the order is $Li_2 > Li_2^+ > Li_2^-$.

Hence option (2) is the answer.

20. In which of the following pairs of molecules/ions, both the species are not likely to exist ?

- (1) H₂⁺, He₂²⁻
- (2) H₂⁻, He₂²⁻
- (3) H₂²⁺, He₂
- (4) H₂⁻, He₂²⁺

Solution:

The bond order of H_2^{2+} and He_2 is zero. So these molecules do not exist. Hence option (3) is the answer.

21. Bond distance in HF is 9.17×10^{-11} m. Dipole moment of HF is 6.104×10^{-30} Cm. The percent ionic character in HF will be : (electron charge = 1.60×10^{-19} C)

- (1) 61.0%
- (2) 38.0%
- (3) 35.5%
- (4) 41.5%

Solution:

Given Bond distance = 9.17×10^{-11} m. Dipole moment = 6.104×10^{-30} Cm % iconic character = $6.104 \times 10^{-30} \times 100$ / ($1.60 \times 10^{-19} \times 9.17 \times 10^{-11}$) = 41.5%Hence option (4) is the answer.

22. In which of the following ionization processes the bond energy has increased and also the magnetic behaviour has changed from paramagnetic to diamagnetic?

(1) NO \rightarrow NO⁺ (2) O₂ \rightarrow O₂⁺ (3) N₂ \rightarrow N₂⁺ (4) C₂ \rightarrow C₂⁺

Solution:

During the ionisation of NO \rightarrow NO⁺, the bond order changes from 2.5 to 3. Also magnetic character changes from paramagnetic to diamagnetic.

During the ionisation of $O_2 \rightarrow O_2^+$, the bond order increases from 2 to 2.5 and the magnetic character changes from paramagnetic to diamagnetic.

https://byjus.com

During the ionisation of $N_2 \rightarrow N_2^+$, the bond order decreases from 3 to 2.5 and the magnetic behaviour changes from diamagnetic to paramagnetic.

During the ionisation of $C_2 \rightarrow C_2^+$, the bond order decreases from 2 to 1.5 and the magnetic behaviour changes from diamagnetic to paramagnetic.

Hence option (1) is the answer.

23. Which one of the following molecules is paramagnetic?

- (1) NO
- (2) O₃
- (3) N₂
- (4) CO

Solution:

NO has an unpaired electron. So it is paramagnetic in nature. Hence option (1) is the answer.

24. The catenation tendency of C, Si and Ge is in the order Ge < Si < C. The bond energies (in kJ smol⁻¹ of C — C, Si — Si and Ge—Ge bonds are respectively :

(1) 348, 260, 297
 (2) 348, 297, 260
 (3) 297, 348, 260
 (4) 260, 297, 348

Solution:

Bond energy order is C - C > Si - Si > Ge - Ge. Hence option (2) is the answer.

25. Oxidation state of sulphur in anions SO₃²⁻, S₂O₄²⁻ and S₂O₆²⁻ increases in the orders

(1) $S_2O_6^{2-} < S_2O_4^{2-} < SO_3^{2-}$ (2) $SO_3^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$ (3) $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-}$ (4) $S_2O_4^{2-} < S_2O_6^{2-} < SO_3^{2-}$

Solution:

The oxidation state of sulphur in SO_3^{2-} is +4. The Oxidation state of sulphur in $S_2O_4^{2-}$ is +3 and in $S_2O_6^{2-}$ is +5. So the order is $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-}$ Hence option (3) is the answer.

26. In which of the following species is the underlined carbon having sp³ hybridisation?

- (1) CH₃COOH
- (2) CH₃CH₂OH
- (3) CH₃COCH₃
- (4) CH₂=CH–CH₃

Solution:

Only in CH_3CH_2OH , carbon has sp^3 hybridisation. In other molecules, the carbon atom has a multiple bond, Hence option (2) is the answer.

27. In which of the following sets, all the given species are isostructural?

(1) BF₃, NF₃, PF₃, AIF₃
 (2) PCl₃, AICl₃, BCl₃, SbCl₃
 (3) BF₄⁻, CCl₄, NH₄⁺, PCl₄⁺
 (4) CO₂, NO₂, CIO₂, SiO₂

Solution:

 BF_{4}^{-} , CCl_{4} , NH_{4}^{+} , PCl_{4}^{+} are tetrahedral. Hence option (3) is the answer.

28. In XeF₂, XeF₄, XeF₆ the number of lone pairs of Xe are respectively

- (1) 2, 3, 1
- (2) 1, 2, 3
- (3) 4, 1, 2
- (4) 3, 2, 1

Solution:

 XeF_2 has 3 lone pairs of electrons. XeF_4 has 2 lone pairs of electrons. XeF_6 has 1 lone pair of electrons. Hence option (4) is the answer.

29. Which of the following statements is true?

- (1) HF is less polar than HBr
- (2) absolutely pure water does not contain any ions
- (3) chemical bond formation take place when forces of attraction overcome the forces of repulsion
- (4) in covalency transference of electron takes place

Solution:

Chemical bond formation takes place when forces of attraction overcome the forces of repulsion. Hence option (3) is the answer.

30. Which one of the following pairs of molecules will have permanent dipole moments for both members?

- (1) NO_2 and CO_2
- (2) NO₂ and O₃
- (3) SiF₄ and CO₂
- (4) SiF_4 and NO_2

Solution:

 NO_2 and O_3 have angular shape. So they will have a net dipole moment. Hence option (2) is the answer.

31. The states of hybridization of boron and oxygen atoms in boric acid (H₃BO₃) are respectively

(1) sp ² and sp ²	(2) sp ³ and sp ³
(3) sp ³ and sp ²	(4) sp ² and sp ³

Solution:

Hybridization of B is sp^2 and O is sp^3 Hence option (4) is the answer.

32. The maximum number of 90° angles between bond pair of electrons is observed in

- (1) dsp³ hybridization
- (2) sp³d² hybridization
- (3) dsp² hybridization
- (4) sp³d hybridization

Solution:

 $sp^{3}d^{2}$ hybridisation has octahedral configuration. All the bond angles are 90° in the structure. Hence option (2) is the answer.

33. Which of the following are arranged in an increasing order of their bond strengths?

(1) $O_2^- < O_2 < O_2^+ < O_2^{2^-}$ (2) $O_2^- < O_2^- < O_2 < O_2^+$ (3) $O_2^- < O_2^{2^-} < O_2 < O_2^+$ (4) $O_2^+ < O_2 < O_2^- < O_2^{2^-}$

Solution:

Higher the bond order, stronger the bonds. The increasing order is $O_2^- < O_2^- < O_2^- < O_2^+$. Hence option (2) is the answer.

34. Bond order and magnetic nature of CN⁻ are respectively

- (1) 3, diamagnetic
- (2) 2.5, paramagnetic
- (3) 3, paramagnetic
- (4) 2.5, diamagnetic

Solution:

Bond order = ½ [n_b - n_a] = ½ [10-4] = ½ (6) = 3

https://byjus.com

It does not have unpaired electrons. So, it is diamagnetic.

Hence option (1) is the answer.

35. The bond order in NO is 2.5 while that in NO⁺ is 3. Which of the following statements is true for these two species?

(1)Bond length in NO⁺ is greater than in NO
(2)Bond length is unpredictable
(3)Bond length in NO⁺ in equal to that in NO
(4)Bond length in NO is greater than in NO⁺

Solution:

When bond order increases, bond length decreases. So the bond length in NO is greater than in NO⁺.

Hence option (4) is the answer.