

1. The process with negative entropy change is

- (1) dissolution of iodine in water
- (2) sublimation of dry ice
- (3) synthesis of ammonia from N_2 and H_2
- (4) dissociation of $CaSO_{4(s)}$ to $CaO_{(s)}$ and $SO_{3(g)}$.

Solution:

$$\begin{split} N_{2(g)} + 3H_2 &\rightarrow 2NH_{3(g)} \\ \Delta s &= 2 - 4 = -2 < 0 \\ \text{So entropy is negative.} \\ \text{Hence option (4) is the answer.} \end{split}$$

2. The standard enthalpy of formation of NH_3 is -46 kJ mol⁻¹. If the enthalpy of formation of H_2 from its atoms is -436 kJ mol⁻¹ and that of N_2 is -712 kJ mol⁻¹, the average bond enthalpy of N-H bond in NH_3 is

- (1) -964 kJ mol⁻¹ (2) +352 kJ mol⁻¹ (3) +1056 kJ mol⁻¹
- (4) -1102 kJ mol⁻¹

Solution:

½ N₂ + (3/2)H₂ → NH₃ (Δ H_f) NH₃ = [½ B.E N₂ + (3/2) B.E H₂ - 3 B.E N-H] -46 = [½ 712 + (3/2) 436 - 3 B.E N-H] -46 = 356 + 654 - 3 B.E N-H 3 B.E N-H = 1056 B.E N-H = 1056/3 = 352 kJ mol⁻¹ Hence option (2) is the answer.

3. The enthalpy change for a reaction does not depend upon

- (1) use of different reactants for the same product
- (2) the nature of intermediate reaction steps
- (3) the differences in initial or final temperature of involved substances
- (4) the physical states of reactants and products

Solution:

The enthalpy change for a reaction does not depend upon the nature of intermediate reaction steps. Hence option (2) is the answer.

4. Identify the correct statement regarding a spontaneous process

- (1) For a spontaneous process in an isolated system, the change in entropy is positive
- (2) Endothermic processes are never spontaneous

https://byjus.com

- (3) Exothermic processes are always spontaneous
- (4) Lowering of energy in the reaction process is the only criterion for spontaneity

Solution:

For a spontaneous process in an isolated sys-tem, the change in entropy is positive. Hence option (1) is the answer.

5. For a particular reversible reaction at temperature T, ΔH and ΔS were found to be both +ve. If T_e is the temperature at equilibrium, the reaction would be spontaneous when (1) T_e > T

(2) T > T_e (3) T_e is 5 times T (4) T_e = T

Solution:

At equilibrium, $\Delta G = 0$. $\Delta G = \Delta H - T\Delta S$ For a reaction to be spontaneous ΔG should be negative. So T > T_e Hence option (2) is the answer.

6. The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of 10 dm³ to a volume of 100 dm³ at 27°C is

(1) 32.3 J mol⁻¹K⁻¹
 (2) 42.3 J mol⁻¹K⁻¹
 (3) 38.3 J mol⁻¹K⁻¹
 (4) 35.8 J mol⁻¹K⁻¹

Solution:

Given $V_2 = 100$ $V_1 = 10$ n = 2 $\Delta S = 2.303 nR \log (V_1/V_2)$ $= 2.303 \times 2 \times 8.314 \times \log (100/10)$ $= 2.303 \times 2 \times 8.314 \times \log 10$ $= 38.29 \text{ J mol}^{-1} \text{ K}^{-1}$ Hence option (3) is the answer.

7. A piston filled with 0.04 mol of an ideal gas expands reversibly from 50.0 mL to 375 mL at a constant temperature of 37° C. As it does so, it absorbs 208J of heat. The values of q and w for the process will be (R = 8.314J/molK and In 7.5 = 2.01) (1) q = + 208J, w = - 208 J (2) q = - 208J, w = - 208 J

https://byjus.com

(3) q = - 208J, w = + 208 J (4) q = + 208J, w = + 208 J

Solution:

 $\Delta E = q+w$ The process is isothermal reversible expansion. So $\Delta E = 0$ Hence q = -w Since heat is absorbed, q = +208 J So w = -208 J Hence option (1) is the answer.

8. During compression of a spring, the work done is 10 kJ and 2 kJ escaped to the surrounding as heat. The change in internal energy ΔU (in kJ) is

(1) -8
 (2) 12
 (3) 8
 (4) -12

Solution:

Given w = 10 kJ q = -2 kJ According to first law of thermodynamics, $\Delta U = q + w$ = -2 + 10 = 8 kJ Hence option (3) is the answer.

9. An ideal gas undergoes isothermal expansion at constant pressure. During the process

- (1) enthalpy increases but entropy decreases
- (2) enthalpy remains constant but entropy increases
- (3) enthalpy decreases but entropy increases
- (4) both enthalpy and entropy remain constant.

Solution:

During isothermal expansion at constant pressure, $\Delta H = nC_p \Delta T = 0$ $\Delta S = nRln(V_f/V_i) > 0$ Hence option (2) is the answer.

10. Assuming that water vapour is an ideal gas, the internal energy change (U) when 1 mol of water is vaporized at 1 bar pressure and 100°C, (given: molar enthalpy of vapourisation of water at 1 bar and 373 K = 41 kJ mol⁻¹ and R = 8.3 J mol⁻¹ K⁻¹) will be

(1) 41.00 kJ mol⁻¹

(2) 4.100 kJ mol⁻¹

- (3) 3.7904 kJ mol⁻¹
- (4) 37.904 kJ mol⁻¹

Solution:

Given $\Delta H = 41000$ T = 373 K $\Delta U = \Delta H - \Delta n RT$ = 41000 - 1× 8.314× 373 = 41000 - 3101.122 = 37898.878 J mol⁻¹ = 37.9 kJ mol⁻¹ Hence option (4) is the answer.

11. A gas undergoes change from state A to state B. In this process, the heat absorbed and work done by the gas is 5 J and 8 J, respectively. Now gas is brought back to A by another process during which 3 J of heat is evolved. In this reverse process of B to A

(1) 10 J of the work will be done by the surrounding on gas

(2) 10 J of the work will be done by the gas

- (3) 6 J of the work will be done by the surrounding on gas
- (4) 6 J of the work will be done by the gas.

Solution:

From A to B: Given q = +5 J w = -8 J (work done by the system) According to first law of thermodynamics, U = q + w = 5 - 8 = -3 JFrom B to A: U = 3 J(As internal energy is state function and does not depend on path) q = -3 J (heat evolved), w = U-q = +3-(-3) = +6 JTherefore 6 J work will be done by the surrounding on gas.

Hence option (3) is the answer.

12. An ideal gas is allowed to expand from 1 L to 10 L against a constant external pressure of 1 bar. The work done in kJ is

- (1) +10.0
- (2) -0.9
- (3) -2.0
- (4) -9.0

Solution:

Given $P_{ext} = 1$ bar $V_1 = 1 L$ $V_2 = 10 L$ $w = -P_{ext}(V_2-V_1)$ = -1(10-1) = -9 bar L = -900 J = -0.9 kJHence option (2) is the answer.

13. Among the following, the set of parameters that represents path function, is

(A) q + w
(B) q
(C) w
(D) H - TS
(1) (B) and (C)
(2) (A) and (D)
(3) (B), (C) and (D)
(4) (A), (B) and (C)

Solution:

 $\begin{array}{l} \Delta U = q + w \\ q \Rightarrow path function \\ w \Rightarrow path function \\ \Delta U \Rightarrow state function \\ H -TS = G \Rightarrow state function \\ Hence option (1) is the answer. \end{array}$

14. In a fuel cell methanol is used as fuel and oxygen gas is used as an oxidizer. The reaction is $CH_3OH_{(1)}+(3/2)O_{2(g)} \rightarrow CO_{2(g)}+2H_2O_{(1)}$ At 298 K standard Gibb's energies of formation for $CH_3OH(I)$, $H_2O(I)$ and $CO_2(g)$ are

-166.2, -237.2 and -394.4 kJ mol⁻¹ respectively. If the standard enthalpy of combustion of methanol is –726 kJmol⁻¹, the efficiency of the fuel cell will be

- (1) 90%
- (2) 97%
- (3) 80%
- (4) 87%

Solution:

CH₃OH_(I)+ (3/2)O_{2(g)} → CO_{2(g)} + 2H₂O_(I) Given ΔG_f^0 CH₃OH (*I*) = -166.2 kJ mol⁻¹

 $\Delta G_{f}^{0} H_{2}O(l) = -394.4 \text{ kJ mol}^{-1}$ $\Delta G = \Sigma \Delta G_{f}^{0} \text{ products} - \Sigma \Delta G_{f}^{0} \text{ reactants}$ = -394.4 - 2(237.2) + 166.2 $= -702.6 \text{ kJ mol}^{-1}$ The efficiency of fuel cell = (\Delta G/ \Delta H) \times 100 $= (702.6/726) \times 100$ = 97%Hence option (2) is the answer.

15. Consider the reaction : $4NO_2(g) + O_2(g) \rightarrow 2N_2O_5(g)$. $\Delta_r H = -111kJ$ If $N_2O_5(s)$ is formed instead of $N_2O_5(g)$ in the above reaction, the $\Delta_r H$ value will be:-(given, ΔH of sublimation for N_2O_5 is 54 kJ mol⁻¹) (1) -165 kJ (2) +54 kJ (3) +219 kJ (4) -219 kJ

Solution: Given $\Delta H_{reaction} = -111 \text{ kJ}$ $\Delta H_{sub} = 54 \text{ kJ}$ $\Delta H_{f} + \Delta H_{sub} = \Delta H_{reaction}$ [Hess's law] $\Delta H_{f} = \Delta H_{reaction} - \Delta H_{sub}$ = -111 - 54 = -165 kJHence option (1) is the answer.