

Question 1: A value of x satisfying the equation $sin[cot^{-1}(1 + x)] = cos[tan^{-1}x]$, is: (a) ½ (b) -1 (c) 0 (d) -1/2 Answer: (d) Solution: Given equation is: $sin[cot^{-1}(1 + x)] = cos[tan^{-1}x]$ Let $\cot^{-1}(1 + x)$] = a => cot a = 1 + x ...(1) And $tan^{-1}x = b = x = tan b ...(2)$ Solve (1) for a in terms of sin function: $\cot a = 1 + x$ We know, cosec a = $\sqrt{1+\cot^2 a}$ = $\sqrt{1+(1+x)^2}$ = $\sqrt{x^2+2x+2}$ Also, sin a = 1/cosec a $=> \sin a = 1/\sqrt{x^2 + 2x + 2}$ Or a = $\sin^{-1}[1/\sqrt{x^2 + 2x + 2}]$ Solve (2) for b in terms of cos function: x = tan b We know, sec b = $\sqrt{1+\tan^2 b} = \sqrt{1+x^2}$ Also, $\cos b = 1/\sec b = 1/\sqrt{(1+x^2)}$ Or b = $\cos^{-1}[1/\sqrt{1+x^2}]$ Given equation => $\sin(\sin^{-1}[1/\sqrt{x^2 + 2x + 2}]) = \cos[\cos^{-1}(1/\sqrt{1+x^2})]$ $=> 1/\sqrt{(x^2 + 2x + 2)} = 1/\sqrt{(1+x^2)}$ Squaring both sides and solving, we get 2x = -1Or x = -1/2Question 2: Let $f(x) = (sin(tan^{-1}x) + sin(cot^{-1}x))^2 - 1$, where |x| > 1. If dy/dx = 1/2 d/dx(sin-1(f(x))) and $y(\sqrt{3}) = \pi/6$, then $y(-\sqrt{3})$ is equal to (a) $\pi/3$ (b) $2\pi/3$ (c) $-\pi/6$ (d) $\pi/7$

Solution:

$$\begin{split} f(x) &= (\sin(\tan^{-1}x) + \sin(\cot^{-1}x))^2 - 1\\ \text{Let } \tan^{-1}(x) &= A \text{ where } A \in (-\pi/2, -\pi/4) \cup (\pi/4, \pi/2)\\ &=> (\sin(\tan^{-1}x) + \sin(\cot^{-1}x))^2 - 1 = (\sin A + \cos B)^2 - 1\\ &= 1 + 2 \sin A \cos A - 1\\ &= \sin 2A\\ &= 2x/(1+x^2)\\ \text{Given that, } dy/dx &= (1/2) d/dx(\sin^{-1}(f(x)))\\ &=> dy/dx = -1/(1+x^2) \text{ for } |x| > 1\\ (x > 1 \text{ and } x < -1) \end{split}$$

To find the value of y(-V3), integrate dy/dx. To integrate the expression, interval should be continuous. So we have to integrate the expression in both the intervals.

https://byjus.com

=>y = $-\tan^{-1}x + c_1$ for x>1 and y = $-\tan^{-1}x + c_2$ for x < -1 For x > 1, $c_1 = \pi/2$ [because y(V3) = $\pi/6$]

But c_2 can't be determined as no other information is given for x < -1, so can't determine the value of c_2 . Therefore, all the options can be true.

Question 3: If $\alpha = 3 \sin^{-1}(6/11)$ and $\beta = 3 \cos^{-1}(4/9)$ where the inverse trig functions take only the principal values, then the right option is

(a) $\cos\beta > 0$ (b) $\cos(\alpha + \beta) > 0$ (c) $\sin\beta < 0$ (d) $\cos\alpha < 0$ Answer: (d)

Solution:

$$\label{eq:alpha} \begin{split} \alpha &= 3 \, \sin^{-1} \, (6/11) \mbox{ and } \beta = 3 \, \cos^{-1} \, (4/9) \\ \mbox{As } 6/11 > 1/2 => \sin^{-1} \, (6/11) > \sin^{-1} \, (1/2) \\ &=> 3 \, \sin^{-1} \, (6/11) > 3 \sin^{-1} \, (1/2) = \pi/2 \\ \mbox{Therefore, } \alpha > \pi/2 \\ \mbox{and } \cos \alpha < 0 \end{split}$$

Question 4: If $f'(x) = \tan^{-1}(\sec x + \tan x)$, $-\pi/2 < x < \pi/2$, and f(0) = 0 then f(1) is equal to (a) $(\pi+1)/4$ (b) $(\pi+2)/4$ (c) $\frac{1}{4}$ (d) $(\pi-1)/4$ **Answer: (a)**

Solution:

 $f'(x) = \tan^{-1}(\sec x + \tan x) = \tan^{-1}(1/\cos x + \sin x/\cos x) = \tan^{-1}[(1+\sin x)/\cos x]$

$$f'(x) = \tan^{-1} \left(\frac{\sin^2 \frac{x}{2} + \cos^2 \frac{x}{2} + 2 \sin \frac{x}{2} \cos \frac{x}{2}}{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}} \right)$$
$$f'(x) = \tan^{-1} \left[\frac{\left(\cos \frac{x}{2} + \sin \frac{x}{2} \right)^2}{\left(\cos \frac{x}{2} + \sin \frac{x}{2} \right) \left(\cos \frac{x}{2} - \sin \frac{x}{2} \right)} \right]$$
$$f'(x) = \tan^{-1} \left[\frac{1 + \tan \frac{x}{2}}{1 - \tan \frac{x}{2}} \right]$$
$$f'(x) = \tan^{-1} \left[\tan \left(\frac{\pi}{4} + \frac{x}{2} \right) \right]$$
$$f'(x) = \pi/4 + x/2$$
$$=> f(x) = (\pi/4) x + x^2/4 + c$$
$$At f(0) = 0 => c = 0$$
$$At f(1) = \pi/4 + 1/4 = (\pi + 1)/4$$

https://byjus.com

Question 5: The value of

$$\tan^{-1}\left[\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right]$$

 $|x| < 1/2, x \neq 0$, is equal to (a) $\pi/4 + (1/2) \cos^{-1}x^2$ (b) $\pi/4 + \cos^{-1}x^2$ (c) $\pi/4 - (1/2) \cos^{-1}x^2$ (d) $\pi/4 - \cos^{-1}x^2$

Answer: (a)

Solution: Let $x^2 = \cos 2A \Rightarrow A = (1/2) \cos^{-1} (x^2) \dots (1)$

$$tan^{-1} [\frac{\sqrt{1+\cos 2A} + \sqrt{1-\cos 2A}}{\sqrt{1+\cos 2A} - \sqrt{1-\cos 2A}}]$$

=
$$tan^{-1} \left[\frac{\sqrt{2cos^2 A} + \sqrt{2sin^2 A}}{\sqrt{2cos^2 A} - \sqrt{2sin^2 A}} \right]$$

=
$$tan^{-1} \left[\frac{\sqrt{2}cosA + \sqrt{2}sinA}{\sqrt{2}cosA - \sqrt{2}sinA} \right]$$

= $tan^{-1}[\frac{1+tan A}{1-tan A}]$

We know, $\tan \pi/4 = 1$, using in above equation, we get = $\tan^{-1}(\tan(\pi/4 + A))$ = $\pi/4 + A$ Using (1) = $\pi/4 + (1/2) \cos^{-1}(x^2)$

Question 6: Find the value of x satisfying the equation $sin[cot^{-1}(1+x)] = cos[tan^{-1}x]$, is (a) -1/2 (b) -1 (c) 0 (d) $\frac{1}{2}$

Answer: (a)

Solution:

We know, $\cot^{-1} x = \sin^{-1} [1/v(1+x^2)] ...(1)$

Also, we know $\tan^{-1} x = \cos^{-1} [1/\sqrt{1+x^2}]$

=>
$$sin[sin^{-1}rac{1}{1+(1+x)^2}] = cos(tan^{-1}x)$$
 ...(2)

Using above result, given equation become,

(2)=>
$$sin[sin^{-1}\frac{1}{1+(1+x)^2}] = cos[cos^{-1}\frac{1}{\sqrt{1+x^2}}]$$

or $\frac{1}{1+(1+x)^2} = \frac{1}{\sqrt{1+x^2}}$

[As sin⁻¹ (sin A) = A \in (- $\pi/2$, $\pi/2$) and cos-1(cos A) = A \in [0, π]]

Solving above equation, we get

$$(1 + (1 + x)^2) = 1 + x^2$$

or
$$x = -1/2$$

Question 7: The value of

$$cot[\sum_{n=1}^{23} cot^{-1}(1 + \sum_{k=1}^{n} 2k)]$$
 is

(a) 23/25 (b) 25/23 (c) 23/24 (d) 24/23

Answer: (b)

Solution:

=

=

=

=

=

=

=

JEE Main Maths Previous Year Questions With Solutions on **Inverse Trigonometric Functions**

$$cot[\sum_{n=1}^{23} cot^{-1}(1 + \sum_{k=1}^{n} 2k)]$$

$$= cot[\sum_{n=1}^{23} cot^{-1}(1 + 2 \times \frac{n(n+1)}{2}]]$$

$$= cot[\sum_{n=1}^{23} cot^{-1}(n^{2} + n + 1)]$$

$$= cot[\sum_{n=1}^{23} tan^{-1}(\frac{n+1-n}{1+n(1+n)})]$$

$$= cot[\sum_{n=1}^{23} tan^{-1}(n + 1) - tan^{-1}n]$$

$$= cot[tan^{-1}(24) - tan^{-1}(1)]$$

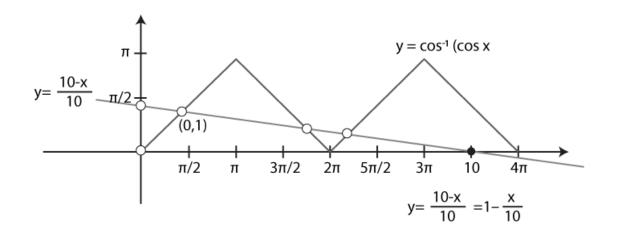
$$= cot[tan^{-1}\frac{23}{25}]$$

= 25/23

Question 8: Let f: $[0, 4\pi] \rightarrow [0, \pi]$ be defined by $f(x) = \cos^{-1}(\cos x)$. The number of points $x \in [0, 4\pi]$ satisfying the equation f(x) = (10-x)/10 is (b) 2 (c) 3 (d) None of these (a) 1 Answer: (c)

Solution: Draw graph for $f(x) = \cos^{-1}(\cos x)$ and f(x) = (10-x)/10

https://byjus.com



Both the equations intersect at three different points, so the number of solutions be 3.

Question 9: Let $f(x) = x \cos^{-1}(\sin(-|x|))$, $x \in (-\pi/2, \pi/2)$ then which of the following is true? (a) $f'(0) = -\pi/2$

(b) f' is decreasing in $(-\pi/2, 0)$ and increasing in $(0, \pi/2)$

(c) f is not differentiable at x = 0

Learnin (d) f' is increasing in $(-\pi/2, 0)$ and decreasing in $(0, \pi/2)$ Answer: (b)

Solution:

 $f(x) = x \cos^{-1}(\sin(-|x|))$ (Given) $= f(x) = x \cos^{-1}(-\sin(|x|))$ [As sine is an odd function] $= f(x) = x [\pi - \cos^{-1}(\sin(|x|))]$ $= f(x) = x [\pi - (\pi/2 - \sin^{-1}(\sin(|x|)))]$ $= f(x) = x(\pi/2 + |x|)$

$$\Rightarrow f(x) = egin{cases} x(rac{\pi}{2}+x) & x \geq 0 \ x(rac{\pi}{2}-x) & x < 0 \end{cases}$$

$$\Rightarrow f'(x) = egin{cases} (rac{\pi}{2} + x) & x \geq 0 \ (rac{\pi}{2} - x) & x < 0 \end{cases}$$

Therefore, f'(x) is decreasing $(-\pi/2, 0)$ and increasing in $(0, \pi/2)$.