Reg. No. :
Name : \qquad

Part - III
 MATHEMATICS (SCIENCE)

Maximum : 80 Scores

General Instructions to Candidates:

- There is a 'Cool-off time' of 15 minutes in addition to the writing time.
- Use the 'Cool-off time' to get familiar with questions and to plan your answers.
- Read questions carefully before answering.
- Read the instructions carefully.
- Calculations, figures and graphs should be shown in the answer sheet itself.
- Malayalam version of the questions is also provided.
- Give equations wherever necessary.
- Electronic devices except non-programmable calculators are not allowed in the Examination Hall.

- आிశెßிก్

1. (a) If $\mathrm{f}(x)=\sin x, \mathrm{~g}(x)=x^{2} ; x \in \mathbb{R}$; then find (fog) (x)
(b) Let u and v be two functions defined on \mathbb{R} as $\mathrm{u}(x)=2 x-3$ and $\mathrm{v}(x)=\frac{3+x}{2}$. Prove that u and v are inverse to each other.
2. (a) For the symmetric matrix $\mathrm{A}=\left[\begin{array}{lll}2 & x & 4 \\ 5 & 3 & 8 \\ 4 & y & 9\end{array}\right]$. Find the values of x and y.
(b) From Part(a), verify AA^{\prime} and $\mathrm{A}+\mathrm{A}^{\prime}$ are symmetric matrices.
3. (a) Find the slope of tangent line to the curve $y=x^{2}-2 x+1$.
(b) Find the equation of tangent to the above curve which is parallel to the line $2 x-y+9=0$.
4. (a) If $\int \mathrm{f}(x) \mathrm{d} x=\log |\tan x|+$ C. Find $\mathrm{f}(x)$.
(b) Evaluate $\int \frac{1}{\sqrt{1-4 x^{2}}} \mathrm{~d} x$.
5. (a) Area bounded by the curve $\mathrm{y}=\mathrm{f}(x)$ and the lines $x=\mathrm{a}, x=\mathrm{b}$ and the x axis $=$ \qquad
(i) $\int_{a}^{b} x d y$
(ii) $\int_{a}^{b} x^{2} d y$
(iii) $\int_{a}^{b} y d x$
(iv) $\int_{a}^{b} y^{2} d x$

Фாைைロழృమைக.

(i) $\int_{a}^{b} x d y$
(ii) $\int_{a}^{b} x^{2} d y$
(iii) $\int_{a}^{b} y d x$
(iv) $\int_{a}^{b} y^{2} d x$
(b) Find area of the shaded region using integration.

6. (a) The order of the differential equation formed by $\mathrm{y}=\mathrm{A} \sin x+\mathrm{B} \cos x+\mathrm{c}$, where A and B are arbitrary constants is
(i) 1
(ii) 2
(iii) 0
(iv) 3
(b) Solve the differential equation $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$
7. A factory produces three items P, Q and R at two plants A and B . The number of items produced and operating costs per hour is as follows :

Plant	Item produced per hour			Operating cost
	\mathbf{P}	\mathbf{Q}	\mathbf{R}	
A	20	15	25	₹ 1000
B	30	12	23	₹ 800

It is desired to produce atleast 500 items of type P , atleast 400 items of type Q and atleast 300 items of type R per day.
(a) Is it a maximization case or a minimization case. Why?
(b) Write the objective function and constraints.

(i) 1
(ii) 2
(iii) 0
(iv) 3

ชังగో				อย1จำ
	P	Q	R	
A	20	15	25	₹ 1000
B	30	12	23	₹ 800

8. (a) The function P is defined as "To each person on the earth is assigned a date of birth". Is this function one-one? Give reason.
(b) Consider the function $\mathrm{f}:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$
given by $\mathrm{f}(x)=\sin x$ and $\mathrm{g}:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$
given by $\mathrm{g}(x)=\cos x$.
(i) Show that f and g are one-one functions.
(ii) Is $\mathrm{f}+\mathrm{g}$ one-one? Why?
(c) The number of one-one functions from a set containing 2 elements to a set containing 3 elements is \qquad
(i) 2
(ii) 3
(iii) 6
(iv) 8
9. If $\mathrm{A}=\sin ^{-1} \frac{2 x}{1+x^{2}}, \mathrm{~B}=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}, \mathrm{C}=\tan ^{-1} \frac{2 x}{1-x^{2}}$ satisfies the condition
$3 \mathrm{~A}-4 \mathrm{~B}+2 \mathrm{C}=\frac{\pi}{3}$. Find the value of x.
10. (a) Write the function whose graph is shown below.

(b) Discuss the continuity of the function obtained in part (a).
(c) Discuss the differentiability of the function obtained in part (a).

Фாைைロழுమைை.

 \qquad
(i) 2
(ii) 3
(iii) 6
(iv) 8
9. $\mathrm{A}=\sin ^{-1} \frac{2 x}{1+x^{2}}, \mathrm{~B}=\cos ^{-1} \frac{1-x^{2}}{1+x^{2}}, \mathrm{C}=\tan ^{-1} \frac{2 x}{1-x^{2}}$ Øा) $3 \mathrm{~A}-4 \mathrm{~B}+2 \mathrm{C}=\frac{\pi}{3}$ Øை
 ゅ๐றృద.

11. A cuboid with a square base and given volume ' V ' is shown in the figure.

(a) Express the surface area ' s ' as a function of x.
(b) Show that the surface area is minimum when it is a cube.
12. (a) If $2 x+4=\mathrm{A}(2 x+3)+\mathrm{B}$, find A and B .
(b) Using part (a) evaluate $\int \frac{2 x+4}{x^{2}+3 x+1} \mathrm{~d} x$.
13. Consider the differential equation $\cos ^{2} x \frac{d y}{d x}+y=\tan x$. Find
(a) its degree
(b) the integrating factor
(c) the general solution.
14. The position vectors of three points A, B, C are given to be $\hat{i}+3 \hat{j}+3 \hat{k}, 4 \hat{i}+4 \hat{k}$ and $-2 \hat{i}+4 \hat{j}+2 \hat{k}$ respectively.
(a) Find $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$.
(b) Find the angle between $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$.
(c) Find a vector which is perpendicular to both $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$ having magnitude 9 units.
15. (a) If $\vec{a}, \vec{b}, \vec{c}$ are coplanar vectors, write the vector perpendicular to \vec{a}.
(b) If $\vec{a}, \vec{b}, \vec{c}$ are coplanar, prove that $\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$ are coplanar.

 கிளைைாைைைக.
 $-2 \hat{i}+4 \hat{j}+2 \hat{k}$ ๑毋ाிவயणஸ.

16. (a) Write all the direction cosines of x-axis.
(b) If a line makes angles α, β, γ with x, y, z axes respectively, then prove that $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$.
(c) If a line makes equal angles with the three co-ordinate axes, find the direction cosines of the lines.
17. The activities of a factory are given in the following table :

Items	Departments			
	Cutting	Mixing	Packing	
A	1	3	1	₹ 5
B	4	1	1	₹ 8
Maximum time available	24	21	9	

Solve the linear programming problem graphically and find the maximum profit subject to the above constraints.

Questions from 18 to 24 carry 6 scores each. Answer any five.
18. If $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$. Show that $A^{2}-5 A+7 I=0$. Hence find A^{4} and A^{-1}.
19. If $\mathrm{A}=\left[\begin{array}{rrr}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$, then
(a) Find A^{-1}.
(b) Use A^{-1} from part (a) solve the system of equations

$$
\begin{aligned}
& 2 x-3 y+5 z=11 \\
& 3 x+2 y-4 z=-5 \\
& x+y-2 z=-3
\end{aligned}
$$

 வவణிண் $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$ ๑ூ

றறறைலิ	விக0円ைைலิ			enso／opiam。
	कşloげ	விळ゙ก゙っஸ゙		
A	1	3	1	₹ 5
B	4	1	1	₹ 8
	24	21	9	

 றவ கெறమృே．

19． $\mathrm{A}=\left[\begin{array}{rrr}2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2\end{array}\right]$ ๔ゥळைळை
（a） A^{-1} ヵ๐ளమృ囚．

$$
\begin{align*}
& 2 x-3 y+5 z=11 \tag{3}\\
& 3 x+2 y-4 z=-5 \\
& x+y-2 z=-3
\end{align*}
$$

20. Find $\frac{\mathrm{dy}}{\mathrm{d} x}$ for the following :
(a) $\sin ^{2} x+\cos ^{2} y=1$.
(b) $y=x^{x}$
(c) $\quad x=\mathrm{a}(\mathrm{t}-\sin \mathrm{t}) \mathrm{y}=\mathrm{a}(1+\cos \mathrm{t})$
21. Evaluate the following integrals :
(a) $\int_{0}^{\pi / 2} \frac{\sin x}{\sin x+\cos x} d x$
(b) $\int^{\frac{\pi}{2}} \sin ^{7} x d x$
$\frac{-\pi}{2}$
(c) $\int x \sin 3 x d x$
22. (a) Find the area bounded by the curve $\mathrm{y}=\sin x$ and the lines $x=0, x=2 \pi$, and x axis.
(b) Two fences are made in a grass field as shown in the figure. A cow is tied at the point O with a rope of length 3 m .

(i) Using integration, find the maximum area of grass that cow can graze within the fences. Choose O as origin.
(ii) If there is no fences find the maximum area of grass that cow can graze?

(a) $\sin ^{2} x+\cos ^{2} y=1$
(b) $\mathrm{y}=x^{x}$
(c) $\quad \mathrm{x}=\mathrm{a}(\mathrm{t}-\sin \mathrm{t}), \mathrm{y}=\mathrm{a}(1+\cos \mathrm{t})$

(a) $\int_{0}^{\pi / 2} \frac{\sin x}{\sin x+\cos x} d x$
(b) $\int^{\frac{\pi}{2}} \sin ^{7} x \mathrm{~d} x$
$\frac{-\pi}{2}$
(c) $\int x \sin 3 x d x$

23. (a) Find the equation of the plane through the intersection of the planes $3 x-y+2 z-4=0$ and $x+y+z-2=0$ and the point $(2,2,1)$.
(b) The Cartesian equation of two lines are given by $\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$. Write the vector equation of these two lines.
(c) Find the shortest distance between the lines mentioned in part (b).
24. (a) A bag contains 4 red and 4 black balls. Another bag contains 2 red and 6 black balls. One of the two bags is selected at random and a ball is drawn from the bag and which is found to be red. Find the probability that the ball is drawn from the first bag.
(b) A random variable X has the following distribution function :

X	0	1	2	3	4
$\mathrm{P}(x)$	k	3 k	5 k	7 k	4 k

(i) Find k.
(ii) Find the mean and the variance of the random variable x.

$\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}, \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$

X	0	1	2	3	4
$\mathrm{P}(x)$	k	3 k	5 k	7 k	4 k

(i) k 』๐ฺృృ.

