Karnataka Class 10 Maths Important Questions

Question 1: Let $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{2, 3\}$ and $B = \{3, 4, 5\}$. Find A', B', A' \cap B', A \cup B and hence show that (A \cup B)' = A' \cap B'.

Solution:

U = {1, 2, 3, 4, 5, 6}, A = {2, 3} and B = {3, 4, 5} A' = {1, 4, 5, 6} B' = {1, 2, 6} A' \cap B' = {1, 6} (A U B) = {2, 3, 4, 5} (A \cup B)' = {1, 6} A' \cap B' = {1, 6} (A \cup B)' = A' \cap B'

Question 2: Prove that $2 + \sqrt{3}$ is an irrational number.

Solution:

If $(2 + \sqrt{3})$ is rational, then,

 $(2 + \sqrt{3}) = a / b$ (say) where a and b are integers and $b \neq 0$ $\Rightarrow \sqrt{3} = a / b - (2)$

 \Rightarrow $\sqrt{3} = [a - 2b] / b ...(1)$

∵ a and b are integers

 \therefore a - 2b is also an integer.

 \Rightarrow (a – 2b) / b is rational.

The L.H.S. of equation (1) is the square root of a prime number.

So, it is irrational and R.H.S. is rational.

It is a contradiction because a rational number and an irrational number can never be equal.

So, our assumption of $2 + \sqrt{3}$ being rational is wrong.

Hence, $2 + \sqrt{3}$ is an irrational number.

Question 3: Find the sum of all 2 digit natural numbers that are divisible by 5.

Solution:

The two-digit natural numbers divisible by 5 are 10, 20 90, 95 The series forms an arithmetic progression. The last term is $a_n = a + (n - 1) d$ 95 = 10 + (n - 1) 5 95 - 10 = (n - 1) 5 85 / 5 = n - 1 17 = n - 1 17 + 1 = 18 = n n = 18Sum of n numbers in a series is given by, $S_n = (n / 2) (a + a_n)$ = (18 / 2) (10 + 95) = 9 * 105= 945

Question 4: If $2({}^{n}P_{2}) + 50 = {}^{2n}P_{2}$, then find the value of n.

Solution:

 $\label{eq:rescaled_response} \begin{array}{l} {}^{n}P_{r} = n! \; / \; (n - r)! \\ 2 \; ({}^{n}P_{2}) + 50 = {}^{2n}P_{2} \\ 2 \; * \; (n! \; / \; (n - 2)!) + 50 = 2n! \; / \; (2n - 2)! \\ 2 \; * \; [n \; (n - 1) \; (n - 2)! \; / \; (n - 2)!] + 50 = 2n \; (2n - 1) \; (2n - 2)! \; / \; (2n - 2)! \\ 2n \; (n - 1) + 50 = 2n \; (2n - 1) \\ 2n^{2} - 2n + 50 = 4n^{2} - 2n \\ 2n^{2} = 50 \\ n^{2} = 50 \; / \; 2 \\ = 25 \\ n = \sqrt{25} \\ n = 5 \end{array}$

Question 5: Rationalise the denominator and simplify $[3\sqrt{2}] / [\sqrt{5} - \sqrt{2}]$.

Solution:

 $[3\sqrt{2}] / [\sqrt{5} - \sqrt{2}]$ = {[3\sqrt{2}] / [\sqrt{5} - \sqrt{2}]} * {[\sqrt{5} + \sqrt{2}] / [\sqrt{5} + \sqrt{2}]} = [3\sqrt{2} \sqrt{5} + 3\sqrt{2} \sqrt{2}] / [(\sqrt{5})^2 - (\sqrt{2})^2] = [3\sqrt{10} + 6] / 3 = 3 (\sqrt{10} + 2) / 3 = \sqrt{10} + 2

Question 6: A box has 4 red and 3 black marbles. Four marbles are picked up randomly. Find the probability that two marbles are red.

Solution:

There are 7 marbles, out of these 4 marbles can be drawn in ${}^{7}C_{4} = 35$ ways. \therefore n (S) = 35 Two marbles out of 4 red marbles can be drawn in ${}^{4}C_{2} = 6$ ways. The remaining 2 marbles must be black and they can be drawn in ${}^{3}C_{2} = 3$ ways. \therefore n (A) = ${}^{4}C_{2} {}^{3}C_{2} = 6 * 3 = 18$ P (A) = n (A) / n (S) = 18 / 35

Question 7: Calculate the standard deviation for the following scores: 5, 6, 7, 8, 9.

Solution:

x	x ²
5	25
6	36

7	49
8	64
9	81
$\sum x = 35$	$\sum \mathbf{x}^2 = 255$

Standard deviation = $\sqrt{(\sum x^2 / N)} - (\sum x / N)^2$ = $\sqrt{(255 / 5)} - (35 / 5)^2$ = $\sqrt{51} - 49$ = $\sqrt{2}$ = 1.414

Question 8: Find the radius of a circle whose centre is (-5, 4) and which passes through the point (-7, 1).

Solution:

 $(x_1, y_1) = (-5, 4)$ $(x_2, y_2) = (-7, 1)$ $\therefore d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Radius of the circle = $\sqrt{[-7 - (-5)]^2 + (1 - 4)^2}$ $= \sqrt{(-7 + 5)^2 + (-3)^2}$ $= \sqrt{(-2)^2 + (-3)^2}$ $= \sqrt{4 + 9}$ $r = \sqrt{13}$

Question 9: In \triangle ABC, DE | |BC, if AD = 2 cm, DB = 5 cm and AE = 4 cm, find AC.

Solution:

In \triangle ABC, DE || BC \therefore AD / DB = AE / EC [BPT] 2/5 = 4/ECEC = (4 * 5)/2= 10 cm \therefore AC = AE + EC = 4 + 10 = 14 cm

Question 10: If $\cos \theta = 5 / 13$, then find the value of $(\sin \theta + \cos \theta) / (\sin \theta - \cos \theta)$.

Solution:

 $\cos \theta = 5 / 13 = AB / AC$ In triangle ABC, $B = 90^{\circ}$. $BC^2 = AC^2 - AB^2$

```
BC^{2} = 13^{2} - 5^{2}

BC = \sqrt{169} - 25

= \sqrt{144}

= 12

\sin \theta = 12 / 13

(\sin \theta + \cos \theta) / (\sin \theta - \cos \theta)

= [(12 / 13) + (5 / 13)] / [(12 / 13) - (5 / 13)]

= (17 / 13) * (13 / 7)

= (17 / 7)
```

Question 11: From the top of a building 20 m high, the angle of elevation of the top of a vertical pole is 30° and the angle of depression of the foot of the same pole is 60° . Find the height of the pole.

Solution:

tan $30^\circ = DE / BE$ 1 / $\sqrt{3} = (x - 20) / BE$ BE = $\sqrt{3} (x - 20)$ In $\triangle ABC$, ACB = 60° tan 60° = AB / AC $\sqrt{3} = 20 / [\sqrt{3} (x - 20)]$ 3 (x - 20) = 20 3x - 60 = 20 3x = 80 x = 80 / 3 = 26.6 cm Height of the pole = 26.6 cm

Question 12: A solid metallic cylinder of diameter 12 cm and height 15 cm is melted and recast into toys in the shape of a right circular cone mounted on a hemisphere as shown in the figure. If radii of the cone and hemisphere are each equal to 3 cm and the height of the toy is 7 cm, calculate the number of such toys that can be formed.

Solution:

Height of the cone = h = 24 cm Slant height of the cone = 1 = 25 cm. \therefore Lateral Surface Area of the cone = π rl = $\pi \times 7 \times 25$ sq.cm = 175 π sq.cm. Lateral Surface Area of the cylinder = 2π rh = $2\pi \times 7 \times 30$ sq.cm = 420 π sq.cm. Lateral Surface Area of the hemisphere = 2π r² = $2\pi \times 7^2$

 $=98\pi$ sq.cm.

Total Surface Area of the solid = Lateral Surface Area of the cone + Lateral Surface Area of the cylinder + Lateral Surface Area of the hemisphere = $(175 \pi + 420 \pi + 98 \pi)$ sq.cm. = (22 / 7) * 693= 2178 sq.cm. Cost of painting = (2178 * 10) / 100= Rs. $217 \cdot 8$

Question 13: Find three consecutive positive integers such that the sum of the square of the first integer and the product of the other two is 92.

Solution:

Let x, (x + 1) and (x + 2) be the three consecutive positive integers.

According to the given, $x^{2} + (x + 1) (x + 2) = 92$ $x^{2} + x^{2} + 2x + x + 2 = 92$ $2x^{2} + 3x + 2 - 92 = 0$ $2x^{2} + 3x - 90 = 0$ $2x^{2} - 12x + 15x - 90 = 0$ 2x (x - 6) + 15 (x - 6) = 0 (x - 6) (2x + 15) = 0 x - 6 = 0, 2x + 15 = 0 x = 6, x = -15 / 2The value of x cannot be negative. Therefore, x = 6Hence, the required three consecutive positive integers are 6, 7 and 8.

Question 14: At constant pressure, a certain quantity of water at 24°C is heated. It was observed that the rise in temperature was found to be 4°C per minute. Calculate the time required to raise the temperature of water to 100°C at sea level by using formula.

Solution:

The temperature of the water is at 24 degrees and raised by 4 degrees per minute. This forms an arithmetic progression 24, 28, 32, 36,100 a = 24 d = 4 $T_n = a + (n - 1)d$ 100 = 24 + (n - 1) 4 76 = (n - 1) 4 76 / 4 = (n - 1) 19 = (n - 1) 19 + 1 = n20 = n

Question 15: Draw a chord of length 6 cm in a circle of radius 5 cm. Measure and write the distance of the chord from the centre of the circle.

Solution:

Radius = 5 cm Length of chord AB = 6 cm The distance of the chord from the centre O is OC = 4 cm (by measure)

Solution:

From the given graph: $(x_1, y_1) = (1, 2)$ $(x_2, y_2) = (2, 4)$ $(x_3, y_3) = (3, 6)$ $(x_4, y_4) = (4, 8)$ Slope = $(y_4 - y_1) / (x_4 - x_1)$ = (8 - 2) / (4 - 1)= 6 / 3= 2

Hence, the slope of the line obtained is 2.

Question 17: Draw the plan for the information given below: (Scale 20 m = 1 cm).

	Metre To C	<i></i>
	140	
To D 50	100	
	60	40 to B
To E 30	40	
	From A	

Solution:

Question 18: A dealer sells an article for Rs. 16 and loses as much per cent as the cost price of the article. Find the cost price of the article.

Solution:

Let x be the cost price of the article. Loss percentage = x%The selling price of the article = Rs. 16

```
Loss percentage = (Loss/CP) \times 100

x = (loss/x) \times 100

x^2 = 100 \times loss

\Rightarrow Loss = x^2 / 100

\Rightarrow x - 16 = x^2 / 100

\Rightarrow x^2 = 100x - 1600

\Rightarrow x^2 - 100x + 1600 = 0

\Rightarrow x^2 - 80x - 20x + 1600 = 0

\Rightarrow x (x - 80) - 20 (x - 80) = 0

\Rightarrow (x - 80) (x - 20) = 0

\Rightarrow x = 80, x = 20

Therefore, the cost price of the article is Rs. 20 or Rs. 80.
```

Question 19: A solid is in the form of a cone mounted on a right circular cylinder, both having the same radii as shown in the figure. The radius of the base and height of the cone is 7 cm and 9 cm respectively. If the total height of the solid is 30 cm, find the volume of the solid.

Solution:

The radius of the circular base of the cylinder and cone = r = 7 cm Height of the cone = h = 9 cm The total height of the solid = 30 cm Thus, height of the cylinder = H = 30 - 9 = 21 cm Volume of cone = $(1 / 3) \pi r^2 h$ = $(1 / 3) \times (22 / 7) \times 7 \times 7 \times 9$ = $22 \times 7 \times 3$ = 462 cm^3 Volume of cylinder = $\pi r^2 H$ = $(22 / 7) \times 7 \times 7 \times 21$ = $22 \times 7 \times 21$ = 3234 cm^3 Therefore, the total volume of the solid = $462 + 3234 = 3696 \text{ cm}^3$.

Question 20: State and prove Basic Proportionality (Thale's) theorem.

Solution:

Statement: If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Proof:

In triangle ABC, a line parallel to side BC intersects other two sides namely AB and AC at D and E respectively.

Join BE and CD.

Also, draw DM \perp AC and EN \perp AB.

Area of \triangle ADE = 1 / 2 (AD × EN)

Area (\triangle ADE) = 1 / 2 (AD × EN) Similarly, Area (\triangle BDE) = 1 / 2 (DB × EN)

```
Area (\triangle ADE) = 1 / 2 (AE × DM)

Area (\triangle DEC) = 1 / 2 (EC × DM)

Area (\triangle ADE) / Area (\triangle BDE) = [1 / 2 AD × EN)] / [1 / 2 (DB ×

EN)]

= AD / DB ....(i)

Area (\triangle ADE) / Area (\triangle DEC) = [1 / 2 (AE × DM)] / [1 / 2 (EC ×

DM)]

= AE / EC ....(i)

Triangle BDE and DEC are on the same base DE and between the same parallels.

Therefore, area (\triangle BDE) = area (\triangle DEC) ....(iii)

From (i), (ii) and (iii),

AD / DB = AE / EC

Hence proved.
```