Karnataka Class 10 Maths Important Questions

Question 1: Let $U=\{1,2,3,4,5,6\}, A=\{2,3\}$ and $B=\{3,4,5\}$.
Find $A^{\prime}, B^{\prime}, A^{\prime} \cap B^{\prime}, A \cup B$ and hence show that $(A \cup B)^{\prime}=A^{\prime} \cap$ B^{\prime}.

Solution:
$\mathrm{U}=\{1,2,3,4,5,6\}, \mathrm{A}=\{2,3\}$ and $\mathrm{B}=\{3,4,5\}$
$\mathrm{A}^{\prime}=\{1,4,5,6\}$
$\mathrm{B}^{\prime}=\{1,2,6\}$
$A^{\prime} \cap B^{\prime}=\{1,6\}$
$(A \cup B)=\{2,3,4,5\}$
$(A \cup B)^{\prime}=\{1,6\}$
$A^{\prime} \cap B^{\prime}=\{1,6\}$
$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

Question 2: Prove that $2+\sqrt{ } 3$ is an irrational number.

Solution:

If $(2+\sqrt{ } 3)$ is rational, then,
$(2+\sqrt{ } 3)=a / b$ (say) where a and b are integers and $b \neq 0$
$\Rightarrow \mathrm{V} 3=\mathrm{a} / \mathrm{b}-\mathrm{C})$
$\Rightarrow \mathrm{V} 3=[\mathrm{a}-2 \mathrm{~b}] / \mathrm{b}$
$\because a$ and b are integers
$\therefore \mathrm{a}-2 \mathrm{~b}$ is also an integer.
$\Rightarrow(a-2 b) / b$ is rational.
The L.H.S. of equation (1) is the square root of a prime number.
So, it is irrational and R.H.S. is rational.
It is a contradiction because a rational number and an irrational number can never be equal.
So, our assumption of $2+\sqrt{ } 3$ being rational is wrong.

Hence, $2+\sqrt{ } 3$ is an irrational number.

Question 3: Find the sum of all 2 digit natural numbers that are divisible by 5.

Solution:

The two-digit natural numbers divisible by 5 are 10, 20 \qquad 90, 95
The series forms an arithmetic progression.
The last term is $\mathrm{a}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$95=10+(n-1) 5$
95-10=(n-1) 5
$85 / 5=\mathrm{n}-1$
$17=\mathrm{n}-1$
$17+1=18=n$
$\mathrm{n}=18$
Sum of n numbers in a series is given by,
$\mathrm{S}_{\mathrm{n}}=(\mathrm{n} / 2)\left(\mathrm{a}+\mathrm{a}_{\mathrm{n}}\right)$
$=(18 / 2)(10+95)$
$=9$ * 105
$=945$

Question 4: If $2\left({ }^{n} \mathbf{P}_{2}\right)+\mathbf{5 0}={ }^{2 n} \mathbf{P}_{2}$, then find the value of n.

Solution:

$$
\begin{aligned}
& { }^{n} \mathrm{P}_{\mathrm{r}}=\mathrm{n}!/(\mathrm{n}-\mathrm{r})! \\
& 2\left({ }^{\mathrm{n}} \mathrm{P}_{2}\right)+50={ }^{2 n} \mathrm{P}_{2} \\
& 2 *(\mathrm{n}!/(\mathrm{n}-2)!)+50=2 \mathrm{n}!/(2 \mathrm{n}-2)! \\
& 2 *[\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2)!/(\mathrm{n}-2)!]+50=2 \mathrm{n}(2 \mathrm{n}-1)(2 \mathrm{n}-2)!/(2 \mathrm{n}-2)! \\
& 2 \mathrm{n}(\mathrm{n}-1)+50=2 \mathrm{n}(2 \mathrm{n}-1) \\
& 2 \mathrm{n}^{2}-2 \mathrm{n}+50=4 \mathrm{n}^{2}-2 \mathrm{n} \\
& 2 \mathrm{n}^{2}=50 \\
& \mathrm{n}^{2}=50 / 2 \\
& =25 \\
& \mathrm{n}=\sqrt{ } 25 \\
& \mathrm{n}=5
\end{aligned}
$$

Question 5: Rationalise the denominator and simplify [3 2 2] / [$\sqrt{5}-\sqrt{2}$].

Solution:

$$
\begin{aligned}
& {[3 \sqrt{ } 2] /[\sqrt{ } 5-\sqrt{ } 2]} \\
& =\{[3 \sqrt{ } 2] /[\sqrt{ } 5-\sqrt{ } 2]\} *\{[\sqrt{ } 5+\sqrt{ } 2] /[\sqrt{ } 5+\sqrt{ } 2]\} \\
& =[3 \sqrt{ } 2 \sqrt{ } 5+3 \sqrt{ } 2 \sqrt{ } 2] /\left[(\sqrt{ } 5)^{2}-(\sqrt{ } 2)^{2}\right] \\
& =[3 \sqrt{ } 10+6] / 3 \\
& =3(\sqrt{ } 10+2) / 3 \\
& =\sqrt{ } 10+2
\end{aligned}
$$

Question 6: A box has 4 red and 3 black marbles. Four marbles are picked up randomly. Find the probability that two marbles are red.

Solution:

There are 7 marbles, out of these 4 marbles can be drawn in ${ }^{7} \mathrm{C}_{4}=35$ ways.
$\therefore \mathrm{n}(\mathrm{S})=35$
Two marbles out of 4 red marbles can be drawn in ${ }^{4} \mathrm{C}_{2}=6$ ways.
The remaining 2 marbles must be black and they can be drawn in ${ }^{3} \mathrm{C}_{2}=3$ ways.
$\therefore \mathrm{n}(\mathrm{A})={ }^{4} \mathrm{C}_{2}{ }^{3} \mathrm{C}_{2}=6 * 3=18$
$\mathrm{P}(\mathrm{A})=\mathrm{n}(\mathrm{A}) / \mathrm{n}(\mathrm{S})$
$=18 / 35$

Question 7: Calculate the standard deviation for the following scores: 5, 6, 7, 8,9 .

Solution:

\mathbf{x}	\mathbf{x}^{2}
5	25
6	36

7	49
8	64
9	81
$\sum x=35$	$\sum x^{2}=255$

Standard deviation $=\sqrt{ }\left(\Sigma \mathrm{x}^{2} / \mathrm{N}\right)-(\Sigma \mathrm{x} / \mathrm{N})^{2}$
$=\sqrt{ }(255 / 5)-(35 / 5)^{2}$
$=\sqrt{ } 51-49$
$=\sqrt{ } 2$
$=1.414$

Question 8: Find the radius of a circle whose centre is $(-5,4)$ and which passes through the point $(-7,1)$.

Solution:
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(-5,4)$
$\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(-7,1)$
$\therefore \mathrm{d}=\sqrt{ }\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}$
Radius of the circle $=\sqrt{ }[-7-(-5)]^{2}+(1-4)^{2}$
$=\sqrt{ }(-7+5)^{2}+(-3)^{2}$
$=\sqrt{ }(-2)^{2}+(-3)^{2}$
$=\sqrt{ } 4+9$
$r=\sqrt{ } 13$

Question 9: In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$, if $\mathrm{AD}=2 \mathrm{~cm}, \mathrm{DB}=5 \mathrm{~cm}$ and $\mathrm{AE}=4 \mathrm{~cm}$, find AC.

Solution:

In $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}$
$\therefore \mathrm{AD} / \mathrm{DB}=\mathrm{AE} / \mathrm{EC}$ [BPT]
$2 / 5=4 / \mathrm{EC}$
$\mathrm{EC}=(4 * 5) / 2$
$=10 \mathrm{~cm}$
$\therefore A C=A E+E C$
$=4+10$
$=14 \mathrm{~cm}$

Question 10: If $\cos \theta=5 / 13$, then find the value of $(\sin \theta+\cos \theta) /(\sin \theta-\cos$ $\theta)$.

Solution:

$\cos \theta=5 / 13=\mathrm{AB} / \mathrm{AC}$
In triangle $\mathrm{ABC}, \mathrm{B}=90^{\circ}$.
$\mathrm{BC}^{2}=\mathrm{AC}^{2}-\mathrm{AB}^{2}$

```
\(\mathrm{BC}^{2}=13^{2}-5^{2}\)
\(B C=\sqrt{ } 169-25\)
\(=\sqrt{ } 144\)
\(=12\)
\(\sin \theta=12 / 13\)
\((\sin \theta+\cos \theta) /(\sin \theta-\cos \theta)\)
\(=[(12 / 13)+(5 / 13)] /[(12 / 13)-(5 / 13)]\)
\(=(17 / 13) *(13 / 7)\)
\(=(17 / 7)\)
```

Question 11: From the top of a building 20 m high, the angle of elevation of the top of a vertical pole is 30° and the angle of depression of the foot of the same pole is 60°. Find the height of the pole.

Solution:

In $\triangle \mathrm{BED}, \mathrm{DBE}=30^{\circ}$
$\tan 30^{\circ}=\mathrm{DE} / \mathrm{BE}$
$1 / \sqrt{ } 3=(x-20) / B E$
$B E=\sqrt{3}(x-20)$
In $\triangle \mathrm{ABC}, \mathrm{ACB}=60^{\circ}$
$\tan 60^{\circ}=\mathrm{AB} / \mathrm{AC}$
$\sqrt{ } 3=20 /[\sqrt{ } 3(x-20)]$
$3(x-20)=20$
$3 \mathrm{x}-60=20$
$3 \mathrm{x}=80$
$x=80 / 3=26.6 \mathrm{~cm}$
Height of the pole $=26.6 \mathrm{~cm}$

Question 12: A solid metallic cylinder of diameter 12 cm and height 15 cm is melted and recast into toys in the shape of a right circular cone mounted on a hemisphere as shown in the figure. If radii of the cone and hemisphere are each equal to 3 cm and the height of the toy is 7 cm , calculate the number of such toys that can be formed.

Solution:

Height of the cone $=\mathrm{h}=24 \mathrm{~cm}$
Slant height of the cone $=1=25 \mathrm{~cm}$.
\therefore Lateral Surface Area of the cone $=\pi r l$
$=\pi \times 7 \times 25 \mathrm{sq} . \mathrm{cm}$
$=175 \pi \mathrm{sq} . \mathrm{cm}$.
Lateral Surface Area of the cylinder $=2 \pi \mathrm{rh}$
$=2 \pi \times 7 \times 30 \mathrm{sq} . \mathrm{cm}$
$=420 \pi$ sq. cm .
Lateral Surface Area of the hemisphere $=2 \pi r^{2}$
$=2 \pi \times 7^{2}$
$=98 \pi \mathrm{sq} . \mathrm{cm}$.

Total Surface Area of the solid = Lateral Surface Area of the cone + Lateral Surface Area of the cylinder + Lateral Surface Area of the hemisphere
$=(175 \pi+420 \pi+98 \pi)$ sq.cm.
$=(22 / 7) * 693$
$=2178 \mathrm{sq} . \mathrm{cm}$.
Cost of painting $=(2178 * 10) / 100$
$=$ Rs. 217.8

Question 13: Find three consecutive positive integers such that the sum of the square of the first integer and the product of the other two is 92.

Solution:

Let $\mathrm{x},(\mathrm{x}+1)$ and $(\mathrm{x}+2)$ be the three consecutive positive integers.
According to the given,
$\mathrm{x}^{2}+(\mathrm{x}+1)(\mathrm{x}+2)=92$
$x^{2}+x^{2}+2 x+x+2=92$
$2 x^{2}+3 \mathrm{x}+2-92=0$
$2 x^{2}+3 x-90=0$
$2 \mathrm{x}^{2}-12 \mathrm{x}+15 \mathrm{x}-90=0$
$2 x(x-6)+15(x-6)=0$
$(x-6)(2 x+15)=0$
$x-6=0,2 x+15=0$
$x=6, x=-15 / 2$
The value of x cannot be negative.
Therefore, $x=6$
Hence, the required three consecutive positive integers are 6,7 and 8 .

Question 14: At constant pressure, a certain quantity of water at $24^{\circ} \mathrm{C}$ is heated. It was observed that the rise in temperature was found to be $4^{\circ} \mathrm{C}$ per minute. Calculate the time required to raise the temperature of water to $100^{\circ} \mathrm{C}$ at sea level by using formula.

Solution:

The temperature of the water is at 24 degrees and raised by 4 degrees per minute. This forms an arithmetic progression $24,28,32,36, \ldots .100$
$\mathrm{a}=24$
d $=4$
$\mathrm{T}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$100=24+(n-1) 4$
$76=(\mathrm{n}-1) 4$
$76 / 4=(n-1)$
$19=(\mathrm{n}-1)$
$19+1=n$
$20=\mathrm{n}$

Question 15: Draw a chord of length 6 cm in a circle of radius 5 cm . Measure and write the distance of the chord from the centre of the circle.

Solution:

Radius $=5 \mathrm{~cm}$
Length of chord $\mathrm{AB}=6 \mathrm{~cm}$
The distance of the chord from the centre O is $\mathrm{OC}=4 \mathrm{~cm}$ (by measure)

Question 16: A student while conducting an experiment on Ohm's law, plotted the graph according to the given data. Find the slope of the line obtained.

X-axis I	1	2	3	4
Y-axis V	2	4	6	8

Solution:

From the given graph:
$\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(1,2)$
$\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(2,4)$
$\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)=(3,6)$
$\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)=(4,8)$
Slope $=\left(\mathrm{y}_{4}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{4}-\mathrm{x}_{1}\right)$
$=(8-2) /(4-1)$
$=6 / 3$
$=2$
Hence, the slope of the line obtained is 2 .

Question 17: Draw the plan for the information given below: (Scale $20 \mathrm{~m}=1$ cm).

	Metre To C	
	140	
To D 50	100	
	60	40 to B
To E 30	40	
	From A	

Solution:

Question 18: A dealer sells an article for Rs. 16 and loses as much per cent as the cost price of the article. Find the cost price of the article.

Solution:

Let x be the cost price of the article.
Loss percentage $=x \%$
The selling price of the article = Rs. 16

Loss percentage $=($ Loss $/ \mathrm{CP}) \times 100$
$\mathrm{x}=(\mathrm{loss} / \mathrm{x}) \times 100$
$x^{2}=100 \times$ loss
\Rightarrow Loss $=x^{2} / 100$
$\Rightarrow \mathrm{x}-16=\mathrm{x}^{2} / 100$
$\Rightarrow \mathrm{x}^{2}=100 \mathrm{x}-1600$
$\Rightarrow \mathrm{x}^{2}-100 \mathrm{x}+1600=0$
$\Rightarrow \mathrm{x}^{2}-80 \mathrm{x}-20 \mathrm{x}+1600=0$
$\Rightarrow x(x-80)-20(x-80)=0$
$\Rightarrow(x-80)(x-20)=0$
$\Rightarrow x=80, x=20$
Therefore, the cost price of the article is Rs. 20 or Rs. 80.

Question 19: A solid is in the form of a cone mounted on a right circular cylinder, both having the same radii as shown in the figure. The radius of the base and height of the cone is 7 cm and 9 cm respectively. If the total height of the solid is $\mathbf{3 0} \mathbf{~ c m}$, find the volume of the solid.

Solution:

The radius of the circular base of the cylinder and cone $=\mathrm{r}=7 \mathrm{~cm}$
Height of the cone $=\mathrm{h}=9 \mathrm{~cm}$
The total height of the solid $=30 \mathrm{~cm}$

Thus, height of the cylinder $=\mathrm{H}=30-9=21 \mathrm{~cm}$
Volume of cone $=(1 / 3) \pi r^{2} h$
$=(1 / 3) \times(22 / 7) \times 7 \times 7 \times 9$
$=22 \times 7 \times 3$
$=462 \mathrm{~cm}^{3}$
Volume of cylinder $=\pi r^{2} \mathrm{H}$
$=(22 / 7) \times 7 \times 7 \times 21$
$=22 \times 7 \times 21$
$=3234 \mathrm{~cm}^{3}$
Therefore, the total volume of the solid $=462+3234=3696 \mathrm{~cm}^{3}$.

Question 20: State and prove Basic Proportionality (Thale's) theorem.

Solution:

Statement: If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Proof:

In triangle $A B C$, a line parallel to side $B C$ intersects other two sides namely $A B$ and AC at D and E respectively.
Join BE and CD.
Also, draw $D M \perp A C$ and $E N \perp A B$.

Area of $\triangle A D E=1 / 2(A D \times E N)$
$\operatorname{Area}(\triangle A D E)=1 / 2(A D \times E N)$
Similarly,
Area $(\triangle B D E)=1 / 2(D B \times E N)$

Area $(\triangle \mathrm{ADE})=1 / 2(\mathrm{AE} \times \mathrm{DM})$
Area $(\triangle \mathrm{DEC})=1 / 2(E C \times D M)$
Area $(\triangle \mathrm{ADE}) / \operatorname{Area}(\triangle \mathrm{BDE})=[1 / 2 \mathrm{AD} \times \mathrm{EN})] /[1 / 2(\mathrm{DB} \times$ EN)]
= AD / DB
Area $(\triangle \mathrm{ADE}) / \operatorname{Area}(\triangle \mathrm{DEC})=[1 / 2(\mathrm{AE} \times \mathrm{DM})] /[1 / 2(\mathrm{EC} \times$ DM)]
= AE / EC(i)
Triangle BDE and DEC are on the same base DE and between the same parallels.
Therefore, area ($\triangle \mathrm{BDE}$) $=\operatorname{area}(\triangle \mathrm{DEC}) \cdots$.(iii)
From (i), (ii) and (iii),
$\mathrm{AD} / \mathrm{DB}=\mathrm{AE} / \mathrm{EC}$
Hence proved.

