KBPE Class 11th Maths Important Questions

Question 1: Find sum to " n " terms of the sequence $4+44+444+$ \qquad .

Solution:

$4+44+444+\ldots$ to n terms
$=4[1+11+111+\ldots$ to n terms $]$
$=(4 / 9)[9+99+999+\ldots$ to n terms $]$
$=(4 / 9)\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\ldots+\left(10^{\mathrm{n}}-1\right)\right]$
$=(4 / 9)\left[\left(10+10^{2}+10^{3}+\ldots+10^{\mathrm{n}}\right)-(1+1+1+\ldots \mathrm{n}\right.$ times $\left.)\right]$
$=(4 / 9)\left\{10\left[\left(10^{\mathrm{n}}-1\right) /(10-1)\right]-\mathrm{n}(1)\right\}$
$=(4 / 9)\left[(10 / 9)\left(10^{n}-1\right)-n\right]$

Question 2: Solve $\sin 2 x+\sin 4 x+\sin 6 x=0$.

Solution:

$(\sin 2 \mathrm{x}+\sin 6 \mathrm{x})+\sin 4 \mathrm{x}=0$
$2 \sin 4 \mathrm{x} \cdot \cos 2 \mathrm{x}+\sin 4 \mathrm{x}=0$
$\sin 4 x(2 \cos 2 x+1)=0$
$\sin 4 \mathrm{x}=0$ or $2 \cos 2 \mathrm{x}+1=0$
$\sin 4 \mathrm{x}=0$ or $\cos 2 \mathrm{x}=-1 / 2=-\cos \pi / 3=\cos (\boldsymbol{\pi}-\boldsymbol{\pi} / 3)$
Using $\sin \mathrm{x}=0 \Rightarrow \mathrm{x}=\mathrm{n} \boldsymbol{\pi}$
$\sin 4 \mathrm{x}=0$
$4 \mathrm{x}=\mathrm{n} \pi$
The general solution is $x=(n \pi) / 4$ using $\cos x=\cos a$
$\Rightarrow \mathrm{x}=2 \mathrm{mx} \pm \mathrm{a}$
$\cos 2 \mathrm{x}=\cos ((2 \pi) / 3)$
$2 \mathrm{x}=2 \mathrm{~m} \pi \pm(2 \pi) / 3$
The general solution is $\mathrm{x}=\mathrm{m} \boldsymbol{\pi} \pm \boldsymbol{\pi} / 3$ where m, n in z .

Question 3: One card is drawn at random from a pack of 52 playing cards. Find the probability that:
[a] The card drawn is black
[b] The card drawn is a face card
[c] The card drawn is a blackface card

Solution:
[a] There are 26 black cards in a deck.
Let $\mathrm{E}_{1}=$ event of getting a black card
Number of favourable outcomes $=26$
P $\left(E_{1}\right)=$ Number of favourable outcomes / total number of outcomes
$\mathrm{P}\left(\mathrm{E}_{1}\right)=26 / 52=1 / 2$
[b] There are 12 face cards.
Let $\mathrm{E}_{2}=$ Event of getting a face card
Number of favourable outcomes to $E_{2}=12$
$\mathrm{P}\left(\mathrm{E}_{2}\right)=$ Number of favourable outcomes / total number of outcomes
$\mathrm{P}\left(\mathrm{E}_{2}\right)=12 / 52=3 / 13$
[c] The probability of choosing a black face card is $6 / 52$.

Question 4: (a) If $A=\{a, b, c\}$, then write the power set $P(A)$.
(b) If the number of subsets with 2 elements of a set P is 10 , then find the total number of elements in set P.
(c) Find the number of elements in the power set of P.

Solution:
$[\mathrm{a}] \mathrm{P}(\mathrm{A})=\{\mathrm{o},\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\},\{\mathrm{c}, \mathrm{a}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$
[b] Number of subsets with 2 elements $={ }^{\mathrm{n}} \mathrm{C}_{2}$
${ }^{\mathrm{n}} \mathrm{C}_{2}=10$
$\mathrm{n}(\mathrm{n}-1) \div 2=10$
$\mathrm{n}(\mathrm{n}-1)=20$
$\mathrm{n}(\mathrm{n}-1)=5(5-1)$
$\mathrm{n}=5$
[c] $2^{\text {n }}$

Question 5: Consider the Venn diagram of the Universal Set $\mathbf{U}=\{1,2,3,4,5$, 6, 7, 8, 9, 10, 11, 12, 13\}

[a] Write sets A and B in Roster form
[b] Verify $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

Solution:
[a] $\mathrm{A}=\{6,10,3,4\}$
$\mathrm{B}=\{2,3,4,5,11\}$
$[b] A \cup B=\{2,3,4,5,6,10,11\}$
$(A \cup B)^{\prime}=\{1,7,8,9,12,13\}$
$\mathrm{A}^{\prime}=\{1,2,5,7,8,9,12,13\}$
$\mathrm{B}^{\prime}=\{1,6,7,8,9,10,12,13\}$
$A^{\prime} \cap B^{\prime}=\{1,7,8,9,12,13\}$
$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

Question 6: The figure shows the graph of a function $f(x)$, which is a semicircle centred at the origin:

[a] Write the domain and range of the function.
[b] Define the function $f(x)$.

Solution:
[a] Domain $=[-4,4]$
Range $=[0,4]$
[b] $x^{2}+y^{2}=16$
$\mathrm{y}^{2}=16-\mathrm{x}^{2}$
$y=\sqrt{ } 16-x^{2}$
$f(x)=\sqrt{ } 16-x^{2}$

Question 7: Consider a point $A(4,8,10)$ in space.
[a] Find the distance of the point A from $X Y$ - plane.
[b] Find the distance of point A from the x-axis.
[c] Find the ratio in which the line segment joining the point A and $B(6,10,-$ 8) is divided by YZ- plane.

Solution:

[a] 10
[b] Let $P(4,0,0)$ be a line on the x-axis.
Distance $=\sqrt{ }(4-4)^{2}+(8-0)^{2}+(10-0)^{2}=2 \sqrt{ } 41$
[c] $\left[\mathrm{mx}_{2}+\mathrm{nx}_{1}\right] /[\mathrm{m}+\mathrm{n}]$
$\left[\mathrm{mx}_{2}+\mathrm{nx}_{1}\right]=0$
$\mathrm{m} / \mathrm{n}=-\mathrm{x}_{1} / \mathrm{x}_{2}=-2 / 3$
$m: n=-2: 3$
Question 8: Consider the quadratic equation, $\mathrm{x}^{2}+\mathrm{x}+1=0$
[a] Solve the quadratic equation.
[b] Write the polar form of one of the roots
[c] If the two roots of the given quadratic are a and β, show that $a^{2}=\beta$.
Solution:

$$
\begin{aligned}
& {[a] x^{2}+x+1=0} \\
& x=-b \pm \sqrt{ } b^{2}-4 a c / 2 a \\
& x=-1 \pm \sqrt{ } 3 i / 2
\end{aligned}
$$

[b] Let Z $=(-1 / 2)+i \sqrt{3} / 2$
$x=-1 / 2$ and $y=\sqrt{ } 3 / 2$
$r=\sqrt{ } x^{2}+y^{2}=\sqrt{ }(1 / 4)+(3 / 4)=1$
$\theta=\boldsymbol{\pi}-(\boldsymbol{\pi} / 3)=2 \boldsymbol{\pi} / 3$
$\mathrm{Z}=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$
$=1(\cos (2 \pi / 3)+i \sin (2 \pi / 3))$ is the polar form

Question 9: Consider the following data:

Class	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	6	15	13	7	9

[a] Calculate the mean of the distribution.
[b] Find the standard deviation of the distribution.
[c] Find the coefficient of variation of the distribution.

Solution:
[a]

Class	$\mathbf{f}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{f}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$	$\mathbf{x}_{\mathbf{i}}{ }^{\mathbf{2}}$	$\mathbf{f}_{\mathbf{i} \mathbf{x}_{\mathbf{i}}{ }^{\mathbf{}}}$ $10-20$
$20-30$	15	25	90	225	1350
$30-40$	13	35	455	1225	15925
$40-50$	7	45	315	2025	14175
$50-60$	9	55	495	3025	27225
	$\mathbf{5 0}$		$\mathbf{1 7 3 0}$		$\mathbf{6 8 0 5 0}$

[a] Mean $=\Sigma \mathbf{f}_{\mathrm{i} \mathrm{x}_{\mathrm{i}}} / \Sigma \mathrm{f}_{\mathrm{i}}$
= 1730 / 50
$=34.6$
[b] Variance $=\sum \mathrm{f}_{\mathrm{i} \mathrm{x}_{\mathrm{i}}}{ }^{2} / \Sigma \mathrm{f}_{\mathrm{i}}-(\text { mean })^{2}$
$=[68050 / 50]-[34.6]^{2}$
$=163.84$
Standard deviation $=12.8$
[c] Coefficient of variation $=[\mathrm{SD} /($ mean $)] * 100$
$=(12.8 / 34.6) * 100$
$=36.99$

Question 10: Consider the statement " $10^{2 \mathrm{n}-1}+1$ is divisible by 11 ". Verify that $P(1)$ is true and then prove the statement by using mathematical induction.

Solution:

$\mathrm{P}(1)=10^{2 \mathrm{n}-1}+1=10^{2-1}+1=10+1=11$ is divisible by 11 .
Hence $P(1)$ is true.
$\mathrm{P}(\mathrm{k})=10^{2 \mathrm{k}-1}+1$ is divisible by 11
$10^{2 \mathrm{k}-1}+1=11 \mathrm{~d}$
$10^{2 \mathrm{k}-1}=11 \mathrm{~d}-1$
To prove that $\mathrm{P}(\mathrm{k}+1)$ is true
$\mathrm{P}(\mathrm{k}+1)=10^{2(\mathrm{k}+1)-1}+1$
$10^{2 k+2-1}+1=10^{2 k-1+2}+1$
$=10^{2 \mathrm{k}-1} \cdot 10^{2}+1$
$=100 \cdot 10^{2 \mathrm{k}-1}+1$
$=100[11 \mathrm{~d}-1]+1$
$=100$ [11d] $-100+1$
$=100$ [11d] - 99
$=11$ [100d-9]
$=11 \mathrm{~d}$
$\mathrm{P}(\mathrm{k}+1)$ is true.
Hence $P(n)$ is true for all $n \in N$.

Question 11[a]: Solve the inequality $\mathrm{x} / 3>\mathrm{x} / 2+1$
(b) Solve the system of inequalities graphically:
$2 x+y>6$
$3 x+4 y \leq 12$

Solution:
[a] $x / 3>x / 2+1$
On multiplying by 6 ,
$6(x / 3)>6(x / 2)+6(1)$
$2 \mathrm{x}>3 \mathrm{x}+6$
$2 x-3 x>6$
$-x>6$
$x<-6$
$x=(-\infty,-6)$
[b]

Question 12[a]: The distance between the points $(1,-2,3)$ and $(4,1,2)$ is
[i] $\sqrt{ } 12$
[ii] $\sqrt{ } 19$
[iii] $\sqrt{ } 11$
[iv] $\sqrt{ } 15$
[b] The centroid of a triangle $A B C$ is at the point $(1,2,3)$. If the coordinates of A and B are $(3,-5,7)$ and $(-1,7,-6)$ respectively. Find the coordinate points of C.

Solution:
[a] Answer: [b]
[b]

$[3+(-1)+x] / 3$
$\Rightarrow 2+x=3$
$\Rightarrow \mathrm{x}=3-2=1$
$[-5+7+y] / 3$
$\Rightarrow 2+y=6$
$\Rightarrow \mathrm{y}=6-2=4$
$[7+(-6)+z] / 3$
$\Rightarrow 1+z=9$
$\Rightarrow \mathrm{z}=9-1=8$
The coordinates of C are ($1,4,8$).

Question 13: [a] Find the variance for the observations 2,4,6,8 and 10.
(b) Consider the frequency distribution

\mathbf{x}	5	10	15	20	25
\mathbf{f}	7	4	6	3	5

[i] Find the mean.
[ii] Find the mean deviation about the mean.

Solution:
[a]

\mathbf{x}	5	10	15	20	25
\mathbf{f}	7	4	6	3	5
$\mathbf{f x}$	35	40	90	60	125
\mathbf{x} - (mean)	9	4	1	6	11
$\mathbf{f}[\mathbf{x}-$ (mean)]	63	16	6	18	55

[i] Mean $=\Sigma \mathrm{f}_{\mathrm{i} \mathrm{x}_{\mathrm{i}}} / \Sigma \mathrm{f}_{\mathrm{i}}$
= $350 / 25$
$=14$
[ii] Mean deviation about mean $=\sum \mathrm{f}_{\mathrm{i}} \mid \mathrm{x}-($ mean $) \mid / \mathrm{N}$
$=158 / 25$
$=6.32$

Question 14[i]: $\sin 225^{\circ}$ \qquad
(a) $1 / \sqrt{ } 2$
(b) $\sqrt{ } 3 / 2$
(c) $-1 / \sqrt{ } 2$
(d) $1 / 2$
(ii) Find the principal and general solutions of $\sin x=-\sqrt{3} /$ 2
(iii) Prove that $\tan [A-B / 2]=[a-b] /[a+b] \cot c / 2$.

Solution:

[i] Answer: (c)
[ii] $\sin x=-\sqrt{3} / 2$
$=-\sin (\pi / 3)$
$=\sin (\pi+\pi / 3)$
$=\sin (4 \pi / 3)$
$\sin x=\sin (4 \pi / 3)$
$\mathrm{x}=\mathrm{n} \boldsymbol{\pi}+(-1)^{\mathrm{n}}(4 \boldsymbol{\pi} / 3)$
[c] From the law of cosines $\mathrm{a}=\mathrm{R} \sin \mathrm{A}, \mathrm{b}=\mathrm{R} \sin \mathrm{B}$
$(\mathrm{a}-\mathrm{b}) /(\mathrm{a}+\mathrm{b})=[2 \mathrm{R} \sin \mathrm{A}-2 \mathrm{R} \sin \mathrm{B}] /[2 \mathrm{R} \sin \mathrm{A}+2 \mathrm{R} \sin \mathrm{B}]$
$=[\sin \mathrm{A}-\sin \mathrm{B}] /[\sin \mathrm{A}+\sin \mathrm{B}]$
$=[2 \cos (\mathrm{~A}+\mathrm{B}) / 2 * \sin (\mathrm{~A}-\mathrm{B}) / 2] /[2 \sin (\mathrm{~A}+\mathrm{B}) / 2 * \cos (\mathrm{~A}-\mathrm{B}) / 2]$
$=\cot (\mathrm{A}+\mathrm{B}) / 2 * \tan (\mathrm{~A}-\mathrm{B}) / 2$
$=\cot (90-\mathrm{C} / 2) * \tan (\mathrm{~A}-\mathrm{B}) / 2$
$=\tan \mathrm{C} / 2 * \tan (\mathrm{~A}-\mathrm{B}) / 2$
$=1 / \cot (\mathrm{C} / 2) * \tan (\mathrm{~A}-\mathrm{B}) / 2$
$\tan (\mathrm{A}-\mathrm{B}) / 2=[(\mathrm{a}-\mathrm{b}) /(\mathrm{a}+\mathrm{b})] \cot \mathrm{C} / 2$

Question 15[a]: Find the equation of the line passing through the points (3, -2) and ($-1,4$).
(b) Reduce the equation $\sqrt{ } 3 x+y-8=0$ into normal form.
(c) If the angle between two lines is $\pi / 4$ and the slope of one of the lines is 1 / 2, find the slope of the other line.

Solution:

$$
\begin{aligned}
& {[a] y-y_{1}=\left[y_{2}-y_{1} / x_{2}-x_{1}\right]\left(x-x_{1}\right)} \\
& y+2=[4+2] /[-1-3][x-3] \\
& y+2=(-3 / 2)(x-3)
\end{aligned}
$$

$$
\begin{aligned}
& 2 \mathrm{y}+4=-3 \mathrm{x}+9 \\
& 3 \mathrm{x}+2 \mathrm{y}-5=0 \\
& \\
& {[\mathrm{~b}] \sqrt{ } 3 \mathrm{x}+\mathrm{y}-8=0} \\
& \sqrt{ } 3 \mathrm{x}+\mathrm{y}=8 \\
& \text { Dividing by }(\sqrt{ } 3)^{2}+1^{2}=2 \\
& (\sqrt{ } 3 / 2) \mathrm{x}+(1 / 2) \mathrm{y}=4 \\
& \\
& {[\mathrm{c}] \cos 30^{\circ} \mathrm{x}+\sin 30^{\circ} \mathrm{y}=4} \\
& \mathrm{~m}_{1}=(1 / 2) \\
& \mathrm{m}_{2}=\mathrm{m}_{1} \\
& \tan \theta=\left|\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right) /\left(1+\mathrm{m}_{1} \mathrm{~m}_{2}\right)\right| \\
& \tan \pi / 4=\left|\left(\mathrm{m}_{2}-(1 / 2)\right) / 1+(1 / 2) \mathrm{m}_{2}\right| \\
& \mathrm{m}=3 \text { or }(-1 / 3)
\end{aligned}
$$

Question 16: [a] Which one among the following is the interval corresponding to the inequality: $-2<\mathrm{x} \leq 3$?
(a) $[-2,3]$
(b) $[-2,3)$
(c) $(-2,3]$
(d) $(-2,3)$
(b) Solve the following inequalities graphically:
$2 x+y \geq 4$
$x+y \leq 3$
$2 x-3 y \leq 6$

Solution:
[a] (-2, 3]
[b]

Question 17: (a) Write the negation of the statement : "Every natural number is greater than zero"
(b) Verify by the method of contradiction :
" $P: \sqrt{ } 13$ is irrational".

Solution:

[a] Negation: It is false that every natural number is greater than 0 . There exists a natural number which is not greater than 0 .
[b] Assume that $\sqrt{ } 13$ is rational, $\sqrt{ } 13=(a / b)$, where a and b are coprime.
$13 b^{2}=a^{2}$
13 divides a
There exists an integer k such that $\mathrm{a}=13 \mathrm{k}$.
$\mathrm{a}^{2}=169 \mathrm{k}^{2}$
$13 \mathrm{~b}^{2}=169 \mathrm{k}^{2}$
$13 \mathrm{k}^{2}=13$ divides b

13 divides both a and b which is a contradiction to our assumption that $\sqrt{ } 13$ is rational. So, $\sqrt{ } 13$ is irrational.

Question 18: (a) $A=\{X / X$ is a prime number, $X \leq 6$
(i) Represent A in the Roster form
(ii) Write the Powerset of A
(b) Out of the $\mathbf{2 5}$ members in an office, 17 like to take tea, $\mathbf{1 6}$ like to take coffee. Assume that each takes at least one of the two drinks.
How many like:
(i) Both Coffee and Tea?
(ii) Only Tea and not Coffee?

Solution:
[a] [i] Roster form $=\{2,3,5\}$
[ii] Power set $=\{(),(2),(3),(5),(2,3),(2,5)(5,3),(2,3,5)\}$
[b] [i] Let -
A $=$ \{people drinking tea $\}$
$\mathrm{B}=\{$ people drinking coffee $\}$
$A \cap B=\{$ people drinking tea / coffee $\}$
$\mathrm{A} \cup \mathrm{B}=$ \{people drinking both tea / coffee\}
$\mathrm{n}(\mathrm{A})=17$
$\mathrm{n}(\mathrm{B})=16$
$n(A \cup B)=25$
Number of people drinking both tea \& coffee,
$n(A \cap B)=n(A)+n(B)-n(A \cup B)$
$n(A \cap B)=17+16-25$
$n(A \cap B)=8$
[ii] Number of people drinking only tea,
$n(A / B)=n(A)-n(A \cap B)$
$n(A / B)=17-8$
$\mathrm{n}(\mathrm{A} / \mathrm{B})=9$

Therefore, the number of people drinking both tea \& coffee is 8 and those drinking only tea are 9 .

Question 19: (a) Number of terms in the expansion of $[x+1 / x]^{10}$ is \qquad
(i) 10
(ii) 9
(iii) 11
(iv) 12
(b) Find the term independent of x in the above expansion.

Solution:

[a] Answer: 11
[b] $\mathrm{a}=\mathrm{x}, \mathrm{b}=(1 / \mathrm{x}), \mathrm{n}=10$
$\mathrm{t}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{\mathrm{n}+\mathrm{r}} \mathrm{b}^{\mathrm{r}}={ }^{10} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{10+\mathrm{r}}(1 / \mathrm{x})^{\mathrm{r}}$
$={ }^{10} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{10 \mathrm{r}}(\mathrm{x})^{-\mathrm{r}}$
$={ }^{10} \mathrm{C}_{\mathrm{r}} \mathrm{x}^{10-\mathrm{r}-\mathrm{r}}$
$={ }^{10} \mathrm{C}_{\mathrm{r}} \mathrm{X}^{10-2 \mathrm{r}}$
Put $10-2 \mathrm{r}=0$
$10=2 \mathrm{r}$
$\mathrm{r}=5$
$\mathrm{t}_{5+1}={ }^{10} \mathrm{C}_{5} \mathrm{x}^{10-2^{*} 5}$
$\mathrm{t}_{6}=252$

Question 20: (i) If the $n^{\text {th }}$ term of the sequence is $n\left(n^{2}+5\right) / 4$, then find its first two terms.
[ii] How many terms of an AP -6, (11/2), -5, are needed to give the sum of $\mathbf{- 2 5}$.
[iii] Find the $10^{\text {th }}$ term of a GP whose $3^{\text {rd }}$ term is 24 and $6^{\text {th }}$ term is 192.

Solution:

[i] $\mathrm{a}_{1}=3 / 2 ; \mathrm{a}_{2}=9 / 2$
[ii] $\mathrm{S}_{\mathrm{n}}=(\mathrm{n} / 2)(2 \mathrm{a}+[\mathrm{n}-1] \mathrm{d})$
$-25=(n / 2)[2 *(-6)+[n-1](1 / 2)]$
$\mathrm{n}=20,5$
[iii] $\mathrm{ar}^{2}=24, \mathrm{ar}^{5}=192$
$\mathrm{a}=6, \mathrm{r}=2$
$\mathrm{a}_{10}=\mathrm{ar}^{9}$
$6(2)^{9}=3072$

Question 21: Find the coordinates of the foci vertices, eccentricity and the length of the latus rectum of the ellipse $100 x^{2}+25 y^{2}=2500$.

Solution:
$\mathrm{x}^{2} / 25+\mathrm{y}^{2} / 100=1$
The major axis is vertical.
$\mathrm{a}=10 ; \mathrm{b}=5$
$c^{2}=a^{2}-b^{2}=75$
The foci are at $(0, \pm \sqrt{ } 75)$.

