KBPE Class 10th Maths Important Questions

Question 1: In the figure given below OABC is a rectangle and its breadth is 3. Write the coordinates of the vertices B and C.

Solution:
The coordinates of the vertex B are $(6,3)$ and vertex C are $(0,3)$.

Question 2: The algebraic form of an arithmetic sequence is $5 \mathrm{n}+3$.
[a] What is the first form of sequence?
[b] What will be the remainder if the terms of the sequences are divided by 5 ?

Solution:

[a] The given arithmetic sequence is $5 \mathrm{n}+3$.
To obtain the first term of the sequence, put $\mathrm{n}=1$.
$a=5(1)+3=8$
[b] The remainder obtained when the terms of the sequence are divided by 5 is given by
$\alpha_{0}=5(0)+3=3$
\therefore Remainder $=3$ when the terms of sequence are divided by 5.

Question 3: In the figure, ' O ' is the centre of the circle and A, B, C, D, E are the points on it.

$\angle E A B=120^{\circ}, \angle E P D=100^{\circ}$. Write the measures of $\angle \mathrm{EDB}, \angle \mathrm{ECB}$ and $\angle \mathrm{DBC}$.

Solution:
ABCDE is a cyclic quadrilateral.
$\angle \mathrm{EDB}+\angle \mathrm{EAB}=180^{\circ}$
$120^{\circ}+\angle \mathrm{EDB}=180^{\circ}$
$\angle E D B=60^{\circ}$
ABCE is a cyclic quadrilateral.
$\angle \mathrm{EAB}+\angle \mathrm{ECB}=180^{\circ}$
$120^{\circ}+\angle \mathrm{ECB}=180^{\circ}$
$\angle \mathrm{ECB}=60^{\circ}$
$\angle \mathrm{BPE}=\angle \mathrm{DPE}$ [vertically opposite angles]
$\angle \mathrm{BPE}=100^{\circ}$
In triangle BPC ,
$\angle \mathrm{BPC}+\angle \mathrm{BCP}+\angle \mathrm{PBC}=180^{\circ}$
$100^{\circ}+60^{\circ}+\angle \mathrm{PBC}=180^{\circ}$
$\angle \mathrm{PBC}=180^{\circ}-160^{\circ}$
$\angle \mathrm{PBC}=20^{\circ}$
$\angle \mathrm{DBC}=20^{\circ}$ [same arc angles]

Question 4: Draw a circle of 3 cm . Mark a point 7 cm away from its centre.
Draw tangents to the circle from this point.

Solution:

Steps of construction:

- Draw a circle of 3 cm radius and O as its centre.
- From the centre, mark $\mathrm{OP}=7 \mathrm{~cm}$.
- Draw a perpendicular bisector of the line OP such that it meets at M.
- Draw a circle with radius OM and cut the circle at Q and R.
- Joint PR and PQ.
- Hence, PR and PQ are tangents.

Question 5: $P(x)=x^{3}+a x^{2}-x+b$ and
[a] Find the relation between a and b for $x-1$ to be a factor of $P(x)$.
[b] Find the relation between a and b for $x-2$ to be a factor of $P(x)$.
[c] Find a and b so that both $x-1$ and $x-2$ are factors of $P(x)$.

Solution:

Given $\mathrm{P}(\mathrm{x})=\mathrm{x}^{3}+\mathrm{ax}^{2}-\mathrm{x}+\mathrm{b}$
[a] $x-2$ is a factor of $P(x)$
$\mathrm{P}(1)=0$
$\mathrm{P}(1)=(1)^{3}+\mathrm{a} \times(1)^{2}-\mathrm{l}+\mathrm{b}=0$
$=1+a-1+b=0$
$a+b=0$
[b] $\mathrm{x}-2$ is a factor of $\mathrm{P}(\mathrm{x})$
$\mathrm{P}(2)=0$
$P(2)=2^{3}+a \times 2^{2}-2+b=0$

$$
\begin{aligned}
& =8+4 a-2+b=0 \\
& =4 a+b=-6
\end{aligned}
$$

[c] We have, $a+b=0$ and $4 a+b=-6$.
Solve these two equations, $\mathrm{a}=-2$ and $\mathrm{b}=2$.

Question 6: A circle with centre (3, 4) passes through the origin.
[a] What is the radius of the circle?
[b] If a point in the circle is (x, y), write the relation between x, y ?
[c] Check if the point $(-2,1)$ lies on this circle?

Solution:

Given , center (3, 4) ; Origin (0,0).
[a] Radius $(r)=\sqrt{ } \mathbf{x}^{2}+y^{2}$
$=\sqrt{ } 3^{2}+4^{2}$
$=\sqrt{ } 9+16$
$=\sqrt{ } 25$
$=5$
[b] Equation of the circle $=(x-a)^{2}+(y-b)^{2}=r^{2}$
$(x-3)^{2}+(y-4)^{2}=5^{2}$
$\Rightarrow x^{2}-6 x+9+y^{2}-8 y+16=25$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}-6 \mathrm{x}-8 \mathrm{y}+25-25=0$
$\Rightarrow x^{2}+y^{2}-6 x-8 y=0$ is the equation of the circle.
[c] $(-2,1)$, substitute this value in the equation of the circle, we get, $(-2)^{2}+(1)^{2}-6 \times-2-8 \times 1=0$
$4+1+12-8=0$
$17-8=0$
$9 \neq 0$
AC > radius of the circle.
Hence, the point $(-2,1)$ lies outside the circle.

Question 7: A boy saw the top of a building under construction at an elevation of 30°. The completed building was 12 meters higher and the boy saw its top at an elevation of 60° from the same spot.
[a] Draw a rough figure based on the given details.
[b] What is the height of the building?
[c] What is the distance between the building and the boy?

Solution:
[a]

[b] Consider $\mathrm{AC}=\mathrm{x}, \mathrm{AD}=\mathrm{x}+12$.
In triangle $\mathrm{ABD}, \mathrm{AD} / \mathrm{AB}=\tan 60^{\circ}$
$\mathrm{AB}=\mathrm{AD} / \tan 60^{\circ}$
$\Rightarrow A B=x+12 / V 3$
In triangle ABC ,
$\mathrm{AC} / \mathrm{AB}=\tan 30^{\circ}$
$\Rightarrow A B=A C / \tan 30^{\circ}$
$\Rightarrow A B=x /[1 / \sqrt{ } 3]$
= $\mathrm{x} \sqrt{ } 3 \ldots \ldots \ldots$.
Comparing equations (1) and (2),
$[x+12] /[\sqrt{ } 3]=x \sqrt{ } 3$
$\Rightarrow 3 x=x+12$
$\Rightarrow 3 x-x=12$
$\Rightarrow 2 \mathrm{x}=12$
$x=6$
Hence, the height of the building $=6+12=18 \mathrm{~m}$.
[c] Consider the equation (2), $A B=\sqrt{ } 3 x$
$=\sqrt{ } 3 \times 6$
$=1.73 \times 6$
$=10.38 \mathrm{~m}$
Distance between the building and the boy $=10.38 \mathrm{~m}$.

Question 8: Cards marked with numbers 1, 2, 3, 4,, 20 are well shuffled and a card is drawn at random. What is the probability that the number on the card is a:
[a] prime number?
[b] divisible by 3?
[c] a perfect square?

Solution:

Total numbers $=20$
[a] The prime numbers are $2,3,5,7,11,13,17,19$
Favourable cases $=8$
The probability of getting a prime number $=8 / 20=2 / 5$
[b] The numbers divisible by 3 are $3,6,9,12,15,18$
Favourable cases $=6$
Probability of getting a number divisible by $3=6 / 20=3 / 10$
[c] The perfect squares are 1, 4, 9, 16
Favourable cases $=4$
Probability of getting a perfect square number $=4 / 20=1 / 5$

Question 9: A person bought a certain number of pens for Rs. 800. If he had bought 4 pens more for the same money, he would have paid 10 less for each pen. How many pens did he buy?

Solution:

Let a person buy x number of pens.
One pen costs $800 / \mathrm{x}$.
If he buys 4 more pens means $(x+4)$ pens then one pen will cost $(800 / x-10)$.
So total money required to buy $x+4$ pens is $(x+4) *(800 / x-10)$
$=800+3200 / x-10 x-40$
Multiplying above by x ,
$-10 x^{2}+760 x+3200$
$x=-4$ and $x=80$
80 pens are bought by the person.

Question 10: Prove that $\left[\cos ^{2} a+\tan ^{2} a-1\right] /\left[\sin ^{2} a\right]=\tan ^{2} a$.

Solution:
$\left[\cos ^{2} a+\tan ^{2} a-1\right] /\left[\sin ^{2} a\right]$
$=\left[\cos ^{2} \mathrm{a} / \sin ^{2} \mathrm{a}\right]+\left[\tan ^{2} \mathrm{a} / \sin ^{2} \mathrm{a}\right]-\left[1 / \sin ^{2} \mathrm{a}\right]$
$=\cot ^{2} a+\sec ^{2} a-\operatorname{cosec}^{2} a$
$=\left[\cos ^{2} a-1\right] / \sin ^{2} a+\left(1 / \cos ^{2} a\right)$
$=1+\sec ^{2} \mathrm{a}$
$=\tan ^{2} \mathrm{a}$

Question 11: A conical tent is to accommodate 11 persons. Each person must have 4 sq . \mathbf{m} of the space on the ground and 20 cubic metres of air to breath. Find the height of the cone.

Solution:

Area of the base $=11 \times 4=44 \mathrm{~m}^{2}$ and volume of the cone $=11 \times 20=220 \mathrm{~m}^{3}$ $[1 / 3] \times \pi \mathrm{R}^{2} \mathrm{~h}=220 \mathrm{~m}^{3}$
Area of the base $=\pi R^{2}$
$\pi R^{2}=44$
$\mathrm{R}^{2}=44 / 22 \times 7$
$\mathrm{R}^{2}=14$
$\mathrm{R}=\sqrt{ } 14$
By equation (i) and (ii),
[1/3] $\times[22 / 7] \times \sqrt{ } 14 \times \sqrt{ } 14 \times h=220$
$\mathrm{h}=220 \times[3 / 22 \times 2]$
$\mathrm{h}=30 / 2=15 \mathrm{~cm}$

Question 12: Mohan has a recurring deposit in a bank, where he deposited Rs. 2500 per month for 2 years. If he gets Rs. 66,250 at the time of maturity, find:
[a] The interest paid by the bank
[b] The rate of interest

Solution:
I = MV - nx
$\mathrm{I}=66250-(2500 * 24)$
$I=66250-60000$
$\mathrm{I}=6,250$
$6250=2500 * 24 * 25 * \mathrm{R} / 2 * 12 * 100$
$6250=625 \mathrm{R}$
R = 10\%

Question 13: The weekly wages of $\mathbf{4 0}$ workers in a small factory is given below. If the mean weekly wage is Rs. 145 , find the value of a and b.

Daily wages	$80-100$	$100-120$	$120-140$	$140-160$	$160-180$
Number of workers	4	6	a	b	18

Solution:

Daily wages	$80-100$	$100-120$	$120-140$	$140-160$	$160-180$
Number of workers	4	6	a	b	18
Midpoint	90	110	130	150	170
$\mathbf{x} \mathbf{i} \mathbf{f}$	360	660	130 a	150 b	3060

Mean $=145$
$\mathrm{n}=40$
$4+6+\mathrm{a}+\mathrm{b}+18=40$
$a+b=40-28$
$a+b=12$

```
\(\mathrm{a}=\mathrm{b}\) - 12 ---- (1)
Mean \(=\Sigma \mathrm{fx} / \sum \mathrm{f}_{\mathrm{i}}\)
\(145=[360+660+130 \mathrm{a}+150 \mathrm{~b}+3060] / 40\)
\(5800=4080+130 a+150 b\)
\(1720=130 a+150 b\)
\(1720=130[b-12]+150 b\)
\(1720=130 \mathrm{~b}-1560+150 \mathrm{~b}\)
\(1720+1560=280 \mathrm{~b}\)
\(3280 / 280=b\)
\(\mathrm{b}=12\)
\(\mathrm{a}=\mathrm{b}-12\)
\(\mathrm{a}=12-12=0\)
```

Question 14: Find the value of x, given that $B^{\mathbf{2}}=A$, where

$$
\mathrm{B}=\left[\begin{array}{c}
2,12 \\
0,1
\end{array}\right] \text { and } \mathrm{A}=\left[\begin{array}{l}
4, x \\
0,1
\end{array}\right] .
$$

Solution:

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
4 & x \\
0 & 1
\end{array}\right] B=\left[\begin{array}{ll}
2 & 12 \\
0 & 1
\end{array}\right] \\
& B^{2}=A \\
& {\left[\begin{array}{cc}
2 & 12 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 12 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
4 & x \\
0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{cc}
4 & 36 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
4 & x \\
0 & 1
\end{array}\right]} \\
& x=36
\end{aligned}
$$

Question 15: Construct a $\triangle \mathrm{ABC}$ in which $\mathrm{AB}=\mathrm{AC}=5 \mathrm{~cm}$ and $\mathrm{BC}=3.2 \mathrm{~cm}$.
Using a ruler and a compass only draw the reflection $A^{\prime} B C$ of $\triangle A B C$ in $B C$. Draw lines of symmetry of the figure $\mathrm{ABA}^{\prime} \mathrm{C}$.

Solution:

$\mathrm{AB}=\mathrm{AC}=5 \mathrm{~cm}$ and $\mathrm{BC}=3.2 \mathrm{~cm}$
Step 1: Draw a line $B C=3.2 \mathrm{~cm}$

Step 2: Take the radius of 5 cm and centre as B and C, draw two arcs that intersect at A. The triangle ABC is obtained.
Step 3: The radius of 5 cm and centre B and C are taken, draw two arcs opposite side of point A, both the arcs intersect at A, The reflection of triangle $A B C$ is obtained.

Question 16: [a] Write the 6 $^{\text {th }}$ term of the arithmetic sequence 1, 25, 49, 73, 97
[b] How many perfect square terms are there in the arithmetic sequence 97, 73, 49?

Solution:

[a] Given an arithmetic sequence is $1,25,49,73,97$, \qquad
First term (f) = 1
$\mathrm{d}=25-1=24$.
$\mathrm{T}_{6}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$6^{\text {th }}$ term $=\mathrm{f}+5 \mathrm{~d}$
$\Rightarrow 1+5 \times 24$
$\Rightarrow 1+120=121$
[b] Given an arithmetic sequence is $97,73,49$,
The perfect square numbers are $1,4,9,16$, \qquad
Hence the given sequence is $97,73,49,25,1$.
From the above sequence, the perfect square numbers are 49,25 , and 1 .
\therefore The number of perfect square terms are 3 .

Question 17: In the figure, $\angle \mathrm{ABC}=90^{\circ}, \angle \mathrm{C}=\angle \mathrm{D}=45^{\circ}, \mathrm{AB}=10 \mathrm{~cm}$.

[a] What is the length of AC ?
[b] What is the radius of the circumcircle of triangle ABC?
[c] What is the radius of the circumcircle of triangle ABD?

Solution:

In right $\Delta \mathrm{ABC}$, the angles are $450,450,900$
$\Rightarrow 1: 1: \mathrm{V} 2$
$\Rightarrow A B: B C: A C$
$\Rightarrow \mathrm{x}: \mathrm{x}: \mathrm{x}$ V 2
$\Rightarrow 10: 10: 10 \mathrm{v} 2$
[a] The length of $A C=10 \sqrt{ } 2 \mathrm{~cm}$.
[b] The radius of the circumcircle of $\triangle \mathrm{ABC}$
= Half of the hypotenuses AC
$=10 \sqrt{ } 2 / 2$
$=5 \sqrt{ } 2 \mathrm{~cm}$
[c] The radius of the circumcircle of $\triangle \mathrm{ABD}$
= Half of the hypotenuses AC
$=10 \sqrt{ } 2 / 2$
$=5 \sqrt{ } 2 \mathrm{~cm}$

Question 18: The figure of a square sheet paper is shown below. Length of one side of the paper sheet is 36 cm and $\mathrm{AB}=10 \mathrm{~cm}$. The shaded portion is cut out and folded into a square pyramid.

[a] What is the length of the base of the pyramid?
[b] What is the slant height of the pyramid?
[c] Find the lateral surface area of the pyramid.

Solution:

Given, Side of the paper sheet $=36 \mathrm{~cm}$
$\mathrm{AB}=10 \mathrm{~cm}$
[a] Base edge of the pyramid
$\mathrm{AB}=10 \mathrm{~cm}$
[b] Slant height of the pyramid
= [36-10] / 2
$=26 / 2$
$=13 \mathrm{~cm}[\because a+21=36$, side of the larger square $]$
[c] Lateral surface area $=2 \mathrm{al}$
$=2 \times 10 \times 13$
$=260 \mathrm{~cm}^{2}$

Question 19: In a school, the total number of students in 10 A division is equal to the number of students in 10 B . One student is to be selected from each division. The number of boys in 10 A is 20 . The probability of selecting a boy from 10 A is $(2 / 5)$ and that of class B is $(3 / 5)$.
[a] How many students are there in 10 A ?
[b] What is the probability of selecting a girl from 10 A ?
[c] How many boys are there in 10 B?
[d] What is the probability of both the selected students being boys?

Solution:

Class	$\mathbf{X A}$	$\mathbf{X B}$
Boys	20	30
Girls	30	20
Total	50	50

Given the probability of boys in $\mathrm{XA}=2 / 5$
Given the probability of boys in $\mathrm{XB}=3 / 5$
[a] Number of boys in XA
$=20 \times[5 / 2]$
$=50$
[b] Probability of girl from XA
= $1-[2 / 5]$
$=[5-2] / 5$
$=3 / 5$
[c] Number of boys in X B
$=50 \times[3 / 5]$
$=10 \times 3$
$=30$
[d] Both being boys
$=[2 / 5] \times[3 / 5]$
$=6 / 25$

Question 20:
[a] If $p(x)=x^{2}-7 x+13$, what is $p(3)$?
[b] Write the polynomial $p(x)-p(3)$ as the product of two first degree polynomials.
[c] Find the solutions of the equation $p(x)-p(3)=0$.

Solution:

[a] Given polynomial
$\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}-7 \mathrm{x}+13$
$p(3)=3^{2}-7 \times 3+13$
$=9-21+13$
= 1
[b] $p(x)-p(3)=x^{2}-7 x+13-1$
$=\mathrm{x}^{2}-7 \mathrm{x}+12$
$=(x-3)(x-4)$
Hence the product two first degree polynomial $=(x-3)(x-4)$
[c] $p(x)-p(3)=0$
$x^{2}-7 x+12=0$
$\Rightarrow(x-3)(x-4)=0$
$\Rightarrow(x-3)=0$ or $(x-4)=0$
ie., $x=3$ or $x=4$.
Hence the solution is $x=3$ and 4 .

Question 21: [i] If $\mathbf{C}(\mathbf{- 1 , k})$ is a point on the line passing through the points A $(2,4)$ and $B(4,8)$ which number is k ?
[ii] What is the relation between the x coordinate and the y coordinate of any point on this line?

Solution:

[i]

Points A, B and C are collinear.
Area of triangle $\mathrm{ABC}=0$
$(1 / 2)\left(x_{1}\left[y_{2}-y_{3}\right]+x_{2}\left[y_{3}-y_{1}\right]+x_{3}\left[y_{1}-y_{2}\right]\right)$
$|2(8-k)+4(k-4)+(-1)(4-8)|=0$
$16-2 \mathrm{k}+4 \mathrm{k}-16-4+8=0$
$2 \mathrm{k}=-4$
$\mathrm{k}=-2$
[ii]

Area of triangle $\mathrm{ABP}=0$
$(1 / 2)\left(x_{1}\left[y_{2}-y_{3}\right]+x_{2}\left[y_{3}-y_{1}\right]+x_{3}\left[y_{1}-y_{2}\right]\right)$
$|2(8-y)+4(y-4)+(x)(4-8)|=0$
$16-2 y+4 y-16-4 x=0$
$2 y-4 x=0$
$2 y=4 x$
$y=2 x$
$2 x-y=0$

Question 22: A box contains some green and blue balls. 7 red balls are put into it. Now the probability of getting a red ball from the box is $7 / 24$ and that of the blue ball is $1 / 6$.
[i] How many balls are there in the box?
[ii] How many of them are blue?
[iii] What is the probability of getting a green ball from the box?

Solution:

Let the number of green balls be x .

The number of blue balls is y.
Number of red balls $=7$
Total number of balls $=x+y+7$
$\mathrm{P}($ red ball $)=7 / 24$
$\mathrm{P}($ blue ball $)=1 / 3$
[i] Since $P($ red ball $)=7 / 24$,
$7 /[x+y+7]=7 / 24$
$24=x+y+7$
24-7 = $\mathrm{x}+\mathrm{y}$
$17=x+y$---- (1)
$\mathrm{P}($ blue ball $)=1 / 3$
$y /[x+y+7]=1 / 3$
$3 y=x+y+7$
$2 y=x+7$
$-x+2 y=7$---- (2)
On adding equation (1) and (2),
$17=x+y$
$-x+2 y=7$
$3 y=24$
$y=24 / 3$
$y=8$
Put $y=8$ in equation (1),
$17=x+8$
$17-8=x$
$\mathrm{x}=9$
Total number of balls $=8+9+7=24$
[ii] Number of blue balls
y/24=1/3
$3 y=24$
$y=8$
[iii] $P($ green ball $)=x / 24=9 / 24=3 / 8$

Question 23: Circle with centre O touches the sides of a triangle at P, Q and $R, A B=A C, A Q=4 \mathrm{~cm}$ and $C Q=6 \mathrm{~cm}$.

[a] What is the length of CP?
[b] Find the perimeter and the area of the triangle.
[c] What is the radius of the circle?

Solution:

[a] $\mathrm{CP}=\mathrm{CQ}$ [Length of external tangents are equal]
$\mathrm{CP}=6 \mathrm{~cm}$
[b] Perimeter of triangle $=4+6+6+6+4+6=32 \mathrm{~cm}$
For the area of $\triangle \mathrm{ABC}$,
$\mathrm{s}=[\mathrm{AB}+\mathrm{BC}+\mathrm{CA}] / 2$
$=[10+12+10] / 2$
$=16 \mathrm{~cm}$
Area of $\triangle A B C=\sqrt{s}(s-a)(s-b)(s-c)$
$=\sqrt{ }(16)(16-10)(16-12)(16-10)$
$=\sqrt{ } 16 * 6 * 4 * 6$
$=48 \mathrm{~cm}^{2}$
[c] Area of $\triangle \mathrm{ABC}=$ area of $\triangle \mathrm{AOB}+$ area of $\triangle \mathrm{BOC}+$ area of $\triangle \mathrm{COA}$
$48=(1 / 2) * 10 * \mathrm{r}+(1 / 2) * 12 * \mathrm{r}+(1 / 2) * 10 * \mathrm{r}$
$48 * 2=r(10+12+10)$
$48 * 2=32 * r$
$\mathrm{r}=3 \mathrm{~cm}$

Question 24:

From a tin sheet, a sector of radius 20 cm and central angle 240° is divided into 4 equal parts as shown in the figure. The shaded portion is cut off. Using this, a vessel in the shape of a square pyramid is made. What is the capacity of this vessel?

Solution:

In $\triangle \mathrm{OBC}$,
$\angle \mathrm{O}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
$\mathrm{OB}=\mathrm{BC}=\mathrm{OC}=20 \mathrm{~cm}$
$\mathrm{e}=20 \mathrm{~cm}$
$\mathrm{a}=20 \mathrm{~cm} \Rightarrow \mathrm{~d}=20 \sqrt{ } 2$
$h^{2}=e^{2}-(d / 2)^{2}=20^{2}-(10 \sqrt{ } 2)^{2}$
$=400-200$
$=200$
$h=\sqrt{ } 200=10 \sqrt{ } 2 \mathrm{~cm}$
Volume $=[1 / 3] \mathrm{a}^{2} \mathrm{~h}$
$=[1 / 3] \times 20^{2} \times 10 \sqrt{ } 2$
$=4000 \sqrt{ } 2 / 3 \mathrm{~cm}^{3}$
Question 25:

In the figure, the radius of the smaller circle is 3 cm , that of the bigger circle is 6 cm and the distance between the centres of the circles is $15 \mathrm{~cm} . \mathrm{PQ}$ is a tangent to both circles. Find its length.

Solution:

$$
\begin{aligned}
& \text { In } \triangle \mathrm{APC} \text { and } \triangle \mathrm{BQC} \\
& \angle \mathrm{P}=\angle \mathrm{Q}=90^{\circ} \\
& \angle \mathrm{ACP}=\angle \mathrm{BCQ} \\
& \Delta \mathrm{APC} \sim \triangle \mathrm{BQC} \\
& \mathrm{AP} / \mathrm{AC}=\mathrm{BQ} / \mathrm{BC} \\
& 3 / \mathrm{x}=6 / 15-\mathrm{x} \\
& 6 \mathrm{x}=3(15-\mathrm{x}) \\
& =45-3 \mathrm{x} \\
& 9 \mathrm{x}=45 \\
& \mathrm{x}=5 \\
& \mathrm{AP}=3 \mathrm{~cm}, \mathrm{AC}=5 \mathrm{~cm} \\
& =>\mathrm{PC}=4 \mathrm{~cm} \\
& \mathrm{BQ}=6 \mathrm{~cm}, \mathrm{BC}=10 \mathrm{~cm} \\
& =\mathrm{QC}=8 \mathrm{~cm} \\
& \mathrm{PQ}=\mathrm{PC}+\mathrm{QC} \\
& =4+8 \\
& \mathrm{PQ}=12 \mathrm{~cm}
\end{aligned}
$$

