| DAY — 08        | SEAT NUMBER              | <u>د ا</u>            |              |
|-----------------|--------------------------|-----------------------|--------------|
| 2018   III   03 | [ 1100 ]                 | J - 265               | [ (E)        |
| MATHEN          | MATICS & S<br>(ARTS & SC | STATISTICS<br>TIENCE) | S (40)       |
| Time : 3 Hrs.   | (7 Page                  | s) Max                | . Marks : 80 |

Note: (i) All questions are compulsory.

- (ii) Figures to the right indicate full marks.
- (iii) Graph of L.P.P. should be drawn on graph paper only.
- (iv) Use of logarithmic table is allowed.
- (v) Answers to the questions of <u>Section I and Section II</u> should be written in only <u>one answer book</u>.
- (vi) Answer to every new question must be written on a new page.

## **SECTION - 1**

Q. 1. (A) Select and write the appropriate answer from the given[12]alternatives in each of the following sub-questions :(6)

(i) If  $A = \begin{bmatrix} 2 & -3 \\ 4 & 1 \end{bmatrix}$ , then adjoint of matrix A is (a)  $\begin{bmatrix} 1 & 3 \\ -4 & 2 \end{bmatrix}$  (b)  $\begin{bmatrix} 1 & -3 \\ -4 & 2 \end{bmatrix}$ (c)  $\begin{bmatrix} 1 & 3 \\ 4 & -2 \end{bmatrix}$  (d)  $\begin{bmatrix} -1 & -3 \\ -4 & 2 \end{bmatrix}$  (2)

0 2 6 5

Page 1

**P.T.O** 

The principal solutions of sec  $x = \sqrt{3}$  are \_\_\_\_\_. (ii) (b)  $\frac{\pi}{6} \frac{11\pi}{6}$ (a)  $\frac{\pi}{3}, \frac{11\pi}{6}$ (d)  $\frac{\pi}{6}, \frac{11\pi}{4}$ (c)  $\frac{\pi}{4} \frac{11\pi}{4}$ (2)(iii) The measure of acute angle between the lines whose direction ratios are 3, 2, 6 and 2, 1, 2 is \_\_\_\_\_ (b)  $\cos^{-1}\left(\frac{8}{15}\right)$ (a)  $\cos^{-1}\left(\frac{1}{7}\right)$ (d)  $\cos^{-1}\left(\frac{8}{21}\right)$  $(c) \quad \cos^{-1}\left(\frac{1}{3}\right)$ (2)(6)(B) Attempt any THREE of the following : Write the negations of the following statements : (i) All students of this college live in the hostel. (a) (b) 6 is an even number or 36 is a perfect square. (2)If a line makes angles  $\alpha$ ,  $\beta$ ,  $\gamma$  with the co-ordinate axes, (ii) prove that  $\cos 2\alpha + \cos 2\beta + \cos 2\gamma + 1 = 0$ . (2)(iii) Find the distance of the point (1, 2, -1) from the plane (2)x - 2v + 4z = 10 = 0.(iv) Find the vector equation of the line which passes through the point with position vector  $4\hat{i} - \hat{j} + 2\hat{k}$  and is in the direction of  $2\hat{i} + \hat{j} + \hat{k}$ . (2)(v) If  $a = 3\hat{i} - 2\hat{j} + 7\hat{k}$ ,  $\bar{b} = 5\hat{i} + \hat{j} - 2\hat{k}$  and  $c = i + \hat{j} - \hat{k}$ , (2) then find  $\overline{a} \cdot (\overline{b} \times \overline{c})$ .

 $\left[\begin{array}{c}0\\2\end{array}\right]6\left[\begin{array}{c}5\\5\end{array}\right]$ 

Page 2

| Q. 2. | (A)                                     | Attempt any TWO of the following :                                                                                    | (6) [14] |
|-------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------|
|       |                                         | (i) Using vector method prove that the medians of a trian le are concurrent.                                          | (3)      |
|       |                                         | (ii) Using the truth table, prove the following logical equivalence:                                                  | (2)      |
|       |                                         | (iii) If the origin is the centroid of the triangle whose vertices                                                    | (3)      |
|       |                                         | are A(2, $p$ , $-3$ ), B( $q$ , $-2$ , 5) and R( $-5$ , 1, $r$ ), then find<br>the value of $p$ , $q$ , $r$ .         | (3)      |
|       | (B) ∠ tt mpt any TWO of the following : |                                                                                                                       |          |
|       |                                         | (i) Show that a homogeneous equation of degree two in<br>x and y, i.e. $ax^2 + 2 hyy + by^2 = 0$ represents a pair of |          |
|       |                                         | lines passing through the origin if $h^2 - ab \ge 0$ .                                                                | (4)      |
|       |                                         | (ii) In ABC, prove that $\tan\left(\frac{C-A}{\sqrt{2}}\right) = \left(\frac{c-a}{c+a}\right)\cot\frac{B}{2}$         |          |
|       |                                         | (iii) Find the inverse of the matrix, $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$      |          |
|       |                                         | using elementary row transformations.                                                                                 | (4)      |
| Q. 3  | . · (A)                                 | Attempt any TWO of the following :                                                                                    | (6) [14] |
|       |                                         | (i) Find the joint equation of the pair of lines passing through the origin, which are perpendicular to the lines     |          |
|       |                                         | represented by $5x^2 + 2xy - 3y^2 = 0$ .                                                                              | (3)      |

0 2 6 5 Page 3 P.T.O (ii) Find the angle between the lines  $\frac{x-1}{4} = \frac{y-3}{1} = \frac{z}{8}$  and

$$\frac{x-2}{2} = \frac{y+1}{2} = \frac{z-4}{2}$$
(3)

(iii) Write converse, inverse and contrapositive of the following conditional statement
If an angle is a right angle then its measure is 90°. (3)

- (B) Attempt any TWO of the following : (8)
  - (i) Prove that :  $\sin^{-1}\left(\frac{3}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \sin^{-1}\left(\frac{56}{65}\right)$  (4)
  - (ii) Find the vector equation of the plane passing through the points A(1, 0, 1), B(1, -1, 1) and C(4, -3, 2). (4)

(iii) Minimize 
$$Z = 7x + y$$
 subject to  
 $5x + y \ge 5, x + y \ge 3, x \ge 0, y \ge 0$  (4)

## **SECTION - II**

- Q. 4. (A) Select and write the appropriate answer from the given[12]alternatives in each of the following sub-questions :(6)
  - (i) Let the p. m. f. of a random variable X be –

$$P(x) = \frac{3-x}{10} \text{ for } x = -1, 0, 1, 2$$
  
= 0 otherwise  
Then E(X) is \_\_\_\_\_  
(a) 1 (b) 2  
(c) 0 (d) --1 (2)

0 2 6 5

Page 4

(ii) If 
$$\int_{2+8x^2}^{k} dx = \frac{\pi}{16}$$
, then the value of k is \_\_\_\_\_\_  
(a)  $\frac{1}{2}$  (b)  $\frac{\pi}{3}$   
(c)  $\frac{1}{4}$  (d)  $\frac{1}{5}$  (2)  
(iii) Integrating factor of linear differential equation  
 $x \frac{dy}{dx} + 2y = x^2 \log x$  is \_\_\_\_\_\_  
(a)  $x^2$  (b)  
(c)  $x$  (d) (2)  
(B) Attempt any THREE of the following : (6)  
(i) Evaluate :  $\int e^x \left[ \cos \frac{x}{\sin^2 x} \right] dx$  (2)  
(ii) If  $y = \tan^2(\log x^3)$ , find  $\frac{dy}{dx}$  (2)  
(iii) Find the area of ellipse  $\frac{x^2}{1} + \frac{y^2}{4} = 1$ . (2)  
(iv) Obtain the differential equation by eliminating the  
arbitrary constants from the following equation :  
 $y = c_1 e^{2x} + c_2 e^{-2x}$  (2)  
(v) Given  $X \rightarrow B(n, p)$   
If  $n = 10$  and  $p = 0.4$ , find E(X) and Var. (X), (2)

~

Q. 5. (A) Attempt any TWO of the following :

(i) Evaluate: 
$$\int \frac{1}{3+2\sin x + \cos x} dx$$

(ii) If  $x = a \cos^3 t$ ,  $y = a \sin^3 t$ ,

show that 
$$\frac{dy}{dx} = -\left(\frac{y}{x}\right)^3$$

(iii) Examine the continuity of the function :

$$f(x) = \frac{\log 100 - \log(0 \cdot 01 + x)}{3x}, \text{ for } x \neq 0$$

$$\frac{100}{3} \qquad \qquad \text{for } x = 0; \text{ at } x = 0 \qquad (3)$$

## (B) Attempt any TWO of the following :

(i) Find the maximum and minimum value of the function:  $f(x) = 2x^{3} - 21x^{2} + 36x - 20.$ (4)

(ii) Prove that : 
$$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \log \left| \frac{a + x}{a - y} \right| + c$$
(4)

(iii) Show that :

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx, \text{ if } f(x) \text{ is an even function.}$$

= 0, if 
$$f(x)$$
 is an odd function. (4)

Page 6

(6) [14]

(8)

**Q. 6.** (A) Attempt any TWO of the following :

(i) If 
$$f'(x) = \frac{x^2 - 9}{x - 3} + \alpha$$
, for  $x > 3$   
= 5 for  $x = 3$   
=  $2x^2 + 3x + \beta$ , for  $x = 3$ 

is continuous at x = 3, find  $\alpha$  and  $\beta$ . (3)

(ii) Find 
$$\frac{dv}{dx}$$
 if  $y = \tan^{-1} \left( \frac{5x+1}{3-x-6x^2} \right)$  (3)

(i) Verify Rolle's theorem for the following function :  $f(x) = x^2 - 4x + 10$  on [0, 4] (4)

## (ii) Find the particular solution of the differential equation

$$v(1 + \log x) \frac{dx}{dv} - x \log x = 0$$
  
when  $y = e^{x}$  and  $x = e$ . (4)

(iii) Find the variance and standard deviation of the random variable X whose probability distribution is given below :



Page 7

(6) [14]