MSBSHSE Class 10 Mathematics Question Paper 2015 Geometry Paper with Solutions

PART - A

1. Solve any five sub-questions:

(i) In the following figure, seg $A B \perp \operatorname{seg} B C$, seg $D C \perp$ seg $B C$. If $A B=2$ and $D C=3$, find $A(\triangle A B C) /$ A(\triangle DCB).

Solution:

Given,
$\mathrm{AB}=2$ and $\mathrm{DC}=3$
We know that the ratio of areas of two triangles lie on the same base is equal to the ratio of their corresponding heights.
$\mathrm{A}(\triangle \mathrm{ABC}) / \mathrm{A}(\triangle \mathrm{DCB})=\mathrm{AB} / \mathrm{DC}=2 / 3$
(ii) Find the slope and y -intercept of the line $\mathrm{y}=-2 \mathrm{x}+3$.

Solution:

Given,
$y=-2 x+3$
Comparing with the equation of line in slope-intercept form $y=m x+c$
Slope $=m=-2$
y-intercept $=c=3$
(iii) In the following figure, in $\triangle A B C, B C=1, A C=2, \angle B=90^{\circ}$. Find the value of $\sin \theta$.

Solution:

Given,
$B C=1, A C=2, \angle B=90^{\circ}$
$\sin \theta=$ Side opposite to angle $\theta /$ Hypotenuse
$=\mathrm{BC} / \mathrm{AC}$
$=1 / 2$
(iv) Find the diagonal of a square whose side is 10 cm .

Solution:

Given,
Side of a square $=\mathrm{a}=10 \mathrm{~cm}$
Diagonal of the square $=\sqrt{ } 2 \times a$
$=\sqrt{ } 2 \times 10$
$=10 \sqrt{ } 2 \mathrm{~cm}$
(v) The volume of a cube is $1000 \mathrm{~cm}^{3}$. Find the side of a cube.

Solution:

Given,
Volume of cube $=1000 \mathrm{~cm}^{3}$
$\Rightarrow(\text { side })^{3}=(10)^{3}$
\Rightarrow Side $=10 \mathrm{~cm}$
Therefore, the side of the cube is 10 cm .
(vi) If two circles with radii 5 cm and 3 cm respectively touch internally, find the distance between their centres.

Solution:

Given,
Two circles with radii 5 cm and 3 cm respectively touch internally.
Distance between their centres $=$ Difference of the radii
= 5-3
$=2 \mathrm{~cm}$
2. Solve any four sub-questions:
(i) If $\sin \theta=5 / 13$, where θ is an acute angle, find the value of $\cos \theta$.

Solution:

Given,
$\sin \theta=5 / 13$

The Learning App
$\cos \theta=\sqrt{ }\left(1-\sin ^{2} \theta\right)$
$=\sqrt{ }\left[1-(5 / 13)^{2}\right]$
$=\sqrt{ }[1-(25 / 169)]$
$=\sqrt{ }[(169-25) / 169]$
$=\sqrt{ }(144 / 169)$
$=12 / 13$
Therefore, $\cos \theta=12 / 13$
(ii) Draw $\angle \mathrm{ABC}$ of measure 115° and bisect it.

Solution:

(iii) Find the slope of the line passing through the points $C(3,5)$ and $D(-2,-3)$.

Solution:

Let the given points be:
$\mathrm{C}(3,5)=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$\mathrm{D}(-2,-3)=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
Slope of the line passing through the points ($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$)
$=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$
$=(-3-5) /(-2-3)$
$=-8 /-5$
$=8 / 5$
Therefore, the slope is $8 / 5$.
(iv) Find the area of the sector whose arc length and radius are 10 cm and 5 cm respectively.

Solution:

Given,
Length of the arc $=10 \mathrm{~cm}$
Radius $=\mathrm{r}=5 \mathrm{~cm}$
Area of sector $=(\mathrm{r} / 2) \times$ Length of arc
$=(5 / 2) \times 10$
$=5 \times 5$
$=25 \mathrm{~cm}^{2}$
(v) In the following figure, in $\triangle P Q R$, seg $R S$ is the bisector of $\angle P R Q, P S=6, S Q=8, P R=15$. Find $Q R$.

Solution:

Given,
$P S=6, S Q=8, P R=15$
seg RS is the bisector of $\angle P R Q$.
By the angle bisector property,
PR/QR = PS/SQ
$15 / \mathrm{QR}=6 / 8$
$\Rightarrow \mathrm{QR}=(15 \times 8) / 6$
$\Rightarrow Q R=20$
(vi) In the following figure, if $m(\operatorname{arc} D X E)=100^{\circ}$ and $m(\operatorname{arc} A Y C)=40^{\circ}$, find $\angle D B E$.

Solution:

Given,
$\mathrm{m}(\operatorname{arc} \mathrm{DXE})=100^{\circ}$
$\mathrm{m}(\operatorname{arc} \mathrm{AYC})=40^{\circ}$
By the inscribed angle theorem,
$m \angle A E B=(1 / 2) \times m \angle A Y C$
$=(1 / 2) \times 40^{\circ}$
$=20^{\circ}$
And
$m \angle E A D=(1 / 2) \times m \angle D X E$
$=(1 / 2) \times 100^{\circ}$
$=50^{\circ}$

Now, by the exterior angle theorem:
$m \angle D B E+20^{\circ}=50^{\circ}$
$m \angle D B E=50^{\circ}-20^{\circ}=30^{\circ}$
3. Solve any three sub-questions:
[9]
(i) In the following figure, Q is the centre of a circle and PM, PN are tangent segments to the circle. If $\angle M P N=40^{\circ}$, find $\angle M Q N$.

Solution:

Given,
$\angle \mathrm{MPN}=40^{\circ}$
We know that the radius is perpendicular to the tangent through the point of contact.
$\angle \mathrm{PMQ}=\angle \mathrm{PNQ}=90^{\circ}$
In quadrilateral PMQN ,
$\angle \mathrm{MPN}+\angle \mathrm{PNQ}+\angle \mathrm{MQN}+\angle \mathrm{PMQ}=360^{\circ}$
$40^{\circ}+90^{\circ}+\angle \mathrm{MQN}+90^{\circ}=360^{\circ}$
$\angle \mathrm{MQN}+220^{\circ}=360^{\circ}$
$\angle \mathrm{MQN}=360^{\circ}-220^{\circ}$
$\angle M Q N=140^{\circ}$
(ii) Draw the tangents to the circle from the point L with radius 2.8 cm . The point, ' L ' is at a distance 7 cm from the centre ' M '.

Solution:

L

(iii) The ratio of the areas of two triangles with the common base is $6: 5$. Height of the larger triangle is 9 cm , then find the corresponding height of the smaller triangle.

Solution:

Let H be the height of the larger triangle and h be the height of the smaller triangle.
We know that the ratio of the areas of two triangles with a common base is equal to the ratio of their corresponding heights.
$\Rightarrow 6 / 5=\mathrm{H} / \mathrm{h}$
$\Rightarrow 6 / 5=9 / \mathrm{h}$ (given height of the larger triangle is 9 cm)
$\Rightarrow \mathrm{h}=(9 \times 5) / 6$
$\Rightarrow h=15 / 2=7.5 \mathrm{~cm}$
Hence, the corresponding height of the smaller triangle is 7.5 cm .
(iv) Two buildings are in front of each other on either side of a road of width 10 metres. From the top of the first building which is 30 metres high, the angle of elevation to the top of the second is 45°. What is the height of the second building?

Solution:

Let AB be the first building and CD be the second building.
$\mathrm{BD}=$ Width of the road $=10 \mathrm{~m}$
$\mathrm{AB}=30 \mathrm{~m}$

$\mathrm{BD}=\mathrm{AE}=10 \mathrm{~m}$
$\mathrm{AB}=\mathrm{ED}=30 \mathrm{~m}$
In right triangle AEC, $\tan 45^{\circ}=\mathrm{CE} / \mathrm{AE}$
$1=\mathrm{CE} / 10$
$\mathrm{CE}=10 \mathrm{~m}$
$\mathrm{CD}=\mathrm{CE}+\mathrm{ED}$
$=10+30$
$=40 \mathrm{~m}$
Therefore, the height of the second building is 40 m .
(v) Find the volume and surface area of a sphere of radius $4.2 \mathrm{~cm} .(\pi=22 / 7)$

Solution:

Given,
Radius of the sphere $=r=4.2 \mathrm{~cm}$
Volume of sphere $=(4 / 3) \pi r^{3}$
$=(4 / 3) \times(22 / 7) \times 4.2 \times 4.2 \times 4.2$
$=310.464 \mathrm{~cm}^{3}$
The surface area of the sphere $=4 \pi \mathrm{r}^{2}$
$=4 \times(22 / 7) \times 4.2 \times 4.2$
$=221.76 \mathrm{~cm}^{2}$
Therefore, the volume of the sphere is $310.464 \mathrm{~cm}^{3}$ and the surface area of the sphere is $24.64 \mathrm{~cm}^{2}$.
4. Solve any two sub-questions:
(i) Prove that "the opposite angles of a cyclic quadrilateral are supplementary".

Solution:

Given,
$A B C D$ is a cyclic quadrilateral of a circle with centre O.
Construction: Join OB and OD.
To prove: $\angle B A D+\angle B C D=180^{\circ}$

Proof:
We know that the angle subtended by the arc at the centre is twice the angle subtended by it at the remaining part of the circle.
$\angle B O D=2 \angle B A D . .$. (i)
Also,
reflex $\angle B O D=2 \angle B C D$....(ii)
Adding (i) and (ii),
$2 \angle B A D+2 \angle B C D=\angle B O D+$ reflex $\angle B O D$
$2(\angle B A D+\angle B C D)=360^{\circ}$
$\angle B A D+\angle B C D=360^{\circ} / 2$
$\angle B A D+\angle B C D=180^{\circ}$
Hence proved.
(ii) Prove that $\sin ^{6} \theta+\cos ^{6} \theta=1-3 \sin ^{2} \theta \cdot \cos ^{2} \theta$.

Solution:

LHS $=\sin ^{6} \theta+\cos ^{6} \theta$
$=\left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3}$
$\left.=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left[\left(\sin ^{2} \theta\right)\right]^{2}+\left(\cos ^{2} \theta\right)^{2}-\sin ^{2} \theta \cos ^{2} \theta\right]$
$=(1)\left[\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \cos ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta\right]$
$=(1)^{2}-3 \sin ^{2} \theta \cos ^{2} \theta$
$=1-3 \sin ^{2} \theta \cdot \cos ^{2} \theta$
= RHS
Hence proved.
(iii) A test tube has a diameter 20 mm and the height is 15 cm . The lower portion is a hemisphere. Find the capacity of the test tube. $(\pi=3.14)$

Solution:

Given,
Diameter of the test tube $=20 \mathrm{~mm}$
Radius of cylindrical part $=$ Radius of the hemisphere $=r=20 / 2=10 \mathrm{~mm}=1 \mathrm{~cm}$
Height of the test tube $=15 \mathrm{~cm}$
Height of the cylindrical part $=\mathrm{h}=15-1=14 \mathrm{~cm}$
Volume (capacity) of the test tube $=$ Volume of cylinder + Volume of hemisphere
$=\pi \mathrm{r}^{2} \mathrm{~h}+(2 / 3) \pi \mathrm{r}^{3}$
$=3.14 \times 1 \times 1 \times 14+(2 / 3) \times 3.14 \times 1 \times 1 \times 1$
$=43.96+2.09$
$=46.05$
Hence, the capacity of the test tube is $46.05 \mathrm{~cm}^{3}$.

5. Solve any two sub-questions:

(i) Prove that the angle bisector of a triangle divides the side opposite to the angle in the ratio of the remaining sides.

Solution:

Given,
Triangle PQR in which RT is the angle bisector of $\angle \mathrm{QRP}$.
Construction:
Draw angle bisector RT from R which intersects PQ at T .
Extend PR and QR so that they intersect each other at S.

To prove: $\mathrm{PT} / \mathrm{TQ}=\mathrm{PR} / \mathrm{QR}$
Proof:
RT \| QS and PS is the transversal.
$\angle \mathrm{PRT}=\angle \mathrm{RSQ}$ (corresponding angles)
Now, BC is the transversal.
$\angle T R Q=\angle R Q S$ (alternate angles)
$\angle P R T=\angle T R Q$ (given)
From the all above,
$\angle R Q S=\angle R S Q$
In triangle RQS,
$\mathrm{QR}=\mathrm{RS}$ (sides opposite to equal angles are equal)
In triangle PQS ,
RT || QS
$\mathrm{PT} / \mathrm{TQ}=\mathrm{PR} / \mathrm{RS}$
$\mathrm{PT} / \mathrm{TQ}=\mathrm{PR} / \mathrm{RQ}$
Hence proved.
(ii) Write down the equation of a line whose slope is $3 / 2$ and which passes through point P , where P divides the line segment AB joining $\mathrm{A}(-2,6)$ and $\mathrm{B}(3,-4)$ in the ratio $2: 3$.

Solution:

Given,
P divides the line segment AB joining $\mathrm{A}(-2,6)$ and $\mathrm{B}(3,-4)$ in the ratio $2: 3$.
$\mathrm{A}(-2,6)=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$B(3,-4)=\left(x_{2}, y_{2}\right)$
$\mathrm{m}: \mathrm{n}=2: 3$
Using the section formula,
$\mathrm{P}=\left[\left(\mathrm{mx}_{2}+\mathrm{nx}_{1}\right) /(\mathrm{m}+\mathrm{n}),\left(\mathrm{my}_{2}+\mathrm{ny}_{1}\right) /(\mathrm{m}+\mathrm{n})\right]$
$=[(6-6) /(2+3),(-8+18) /(2+3)]$
$=(0 / 5,10 / 5)$
$=(0,2)$
Therefore, $\mathrm{P}=(0,2)$
Equation of the line passing through $p(0,2)$ and having slope $3 / 2$ is:

$$
\begin{aligned}
& y-2=(3 / 2)(x-0) \\
& 2(y-2)=3 x \\
& 2 y-4=3 x
\end{aligned}
$$

$3 x-2 y+4=0$
(iii) $\Delta \mathrm{RST} \sim \Delta \mathrm{UAY}$. In $\Delta \mathrm{RST}, \mathrm{RS}=6 \mathrm{~cm}, \angle \mathrm{~S}=50^{\circ}, \mathrm{ST}=7.5 \mathrm{~cm}$. The corresponding sides of $\Delta \mathrm{RST}$ and $\triangle U A Y$ are in the ratio $5: 4$. Construct $\triangle U A Y$.

Solution:

Given,
Δ RST ~ $\Delta \mathrm{UAY}$
In \triangle RST,
$\mathrm{RS}=6 \mathrm{~cm}, \angle \mathrm{~S}=50^{\circ}$, $\mathrm{ST}=7.5 \mathrm{~cm}$
$\triangle \mathrm{RST}$ and $\triangle \mathrm{UAY}$ are in the ratio $5: 4$. (given)
RS/UA $=$ ST/AY $=$ RT/UY $=5 / 4$
$\angle S=\angle A=50^{\circ}$
Now,
RS/UA $=5 / 4$
$6 / \mathrm{UA}=5 / 4$
$\mathrm{UA}=(6 \times 4) / 5$
$\mathrm{UA}=4.8 \mathrm{~cm}$
Similarly,
ST/AY $=5 / 4$
7.5/AY $=5 / 4$
$\mathrm{AY}=(7.5 \times 4) / 5$
$A Y=6 \mathrm{~cm}$

