MSBSHSE Class 10 Mathematics Question Paper 2016 Geometry Paper with Solutions

PART - A

1. Solve any five sub-questions:

(i) $\Delta \mathrm{DEF} \sim \Delta \mathrm{MNK}$. If $\mathrm{DE}=2, \mathrm{MN}=5$, then find the value of $\mathrm{A}(\triangle \mathrm{DEF}) / \mathrm{A}(\Delta \mathrm{MNK})$.

Solution:

Given,
$\Delta \mathrm{DEF} \sim \Delta \mathrm{MNK}$
$\mathrm{DE}=2, \mathrm{MN}=5$
We know that the ratio of areas of similar triangles is equal to squares of the ratio of their corresponding sides.
$\mathrm{A}(\Delta \mathrm{DEF}) / \mathrm{A}(\Delta \mathrm{MNK})=\mathrm{DE}^{2} / \mathrm{MN}^{2}$
$=(2)^{2} /(5)^{2}$
$=4 / 25$
(ii) In the following figure, in $\triangle A B C, \angle B=90^{\circ}, \angle C=60^{\circ}, \angle A=30^{\circ}, A C=16 \mathrm{~cm}$. Find $B C$.

Solution:

Given,
$\triangle \mathrm{ABC}$ is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.
Side opposite to $30^{\circ}=\mathrm{BC}$
BC $=(1 / 2) \times$ Hypotenuse
$=(1 / 2) \times \mathrm{AC}$
$=(1 / 2) \times 16$
$=8 \mathrm{~cm}$
Therefore, $\mathrm{BC}=8 \mathrm{~cm}$
(iii) In the following figure, $\mathrm{m}(\operatorname{arc} \mathrm{PMQ})=110^{\circ}$, find $\angle \mathrm{PQS}$.

Solution:

Given,
$\mathrm{m}(\operatorname{arc} \mathrm{PMQ})=110^{\circ}$
We know that the measure of the angle formed by the intersection of a chord and tangent of the circle equal to the half the angle made by the arc with the chord.
$\angle P Q S=(1 / 2) \times m(\operatorname{arc} P M Q)$
$=(1 / 2) \times 110^{\circ}$
$=55^{\circ}$
(iv) If the angle $\theta=-30^{\circ}$, find the value of $\cos \theta$.

Solution:

Given,
$\theta=-30^{\circ}$
We know that,
$\cos (-\theta)=\cos \theta$
$\cos \theta=\cos \left(-30^{\circ}\right)$
$=\cos 30^{\circ}$
$=\sqrt{ } 3 / 2$
(v) Find the slope of the line with inclination 60°.

Solution:

Given,
Inclination of line $=\theta=60^{\circ}$
The slope of the line $=\tan \theta$
$=\tan 60^{\circ}$
$=\sqrt{ } 3$
(vi) Using Euler's formula, find V if $E=10, F=6$.

Solution:

Given,
$\mathrm{E}=10, \mathrm{~F}=6$
Using Euler's formula,
$\mathrm{F}+\mathrm{V}=\mathrm{E}+2$
$6+V=10+2$
$\mathrm{V}=12-6$
$V=6$
2. Solve any four sub-questions:
(i) In the following figure, in $\triangle P Q R$, seg $R S$ is the bisector of $\angle P R Q$. If $P S=9, S Q=6, P R=18$, find QR.

Solution:

Given that, in triangle PQR, seg $R S$ is the bisector of $\angle P R Q$.
$\mathrm{PS}=9, \mathrm{SQ}=6, \mathrm{PR}=18$
By the angle bisector property,
$\mathrm{PR} / \mathrm{QR}=\mathrm{PS} / \mathrm{SQ}$
$18 / \mathrm{QR}=9 / 6$
\Rightarrow QR $=(18 \times 6) / 9$
$\Rightarrow Q R=12$
(ii) In the following figure, a tangent segment PA touching a circle in A and a secant PBC are shown. If $\mathrm{AP}=12$, $B P=9$, find $B C$.

Solution:

Given,
PA = tangent
$\mathrm{PBC}=$ secant
By the tangent - secant theorem,
$\mathrm{PB} \times \mathrm{PC}=\mathrm{PA}^{2}$
$9 \times \mathrm{PC}=(12)^{2}$ [given $\mathrm{AP}=12, \mathrm{BP}=9$]

The Learning App
$P C=144 / 9$
$\mathrm{PC}=16$
Now,
$\mathrm{PC}=\mathrm{PB}+\mathrm{BC}$
$16=9+B C$
$\Rightarrow B C=16-9$
$\Rightarrow B C=7$
(iii) Draw an equilateral $\triangle \mathrm{ABC}$ with side 6.4 cm and construct its circumcircle.

Solution:

(iv) For the angle in standard position if the initial arm rotates 130° in an anticlockwise direction, then state the quadrant in which the terminal arm lies. (Draw the Figure and write the answer.)

Solution:

Given,
The initial arm rotates 130° in the anticlockwise direction from the standard position.
The measure of angle 130° lies between 90° and 180°.
Hence, the terminal arm lies in quadrant II.

(v) Find the area of the sector whose arc length and radius are 16 cm and 9 cm respectively.

Solution:

Given,
Length of the arc $=16 \mathrm{~cm}$
Radius $=\mathrm{r}=9 \mathrm{~cm}$
Area of sector $=(\mathrm{r} / 2) \times$ Length of arc
$=(9 / 2) \times 16$
$=9 \times 8$
$=72 \mathrm{~cm}^{2}$
(vi) Find the surface area of a sphere of radius $1.4 \mathrm{~cm} .(\pi=22 / 7)$

Solution:

Given,
Radius of the sphere $=r=1.4 \mathrm{~cm}$
The surface area of the sphere $=4 \pi r^{2}$
$=4 \times(22 / 7) \times 1.4 \times 1.4$
$=24.64 \mathrm{~cm}^{2}$
Therefore, the surface area of the sphere is $24.64 \mathrm{~cm}^{2}$.
3. Solve any three sub-questions:
(i) Adjacent sides of a parallelogram are 11 cm and 17 cm . If the length of one of its diagonals is 26 cm , find the length of the other.

Solution:

Given,
Adjacent sides of a parallelogram are 11 cm and 17 cm .
The length of one diagonal is 26 cm .

$\mathrm{AB}=\mathrm{CD}=17 \mathrm{~cm}$
$\mathrm{BC}=\mathrm{AD}=11 \mathrm{~cm}$
$\mathrm{BD}=26 \mathrm{~cm}$
We know that,
Sum of squares of sides of a parallelogram $=$ Sum of squares of its diagonals
$\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
$(17)^{2}+(11)^{2}+(17)^{2}+(11)^{2}=\mathrm{AC}^{2}+(26)^{2}$
$289+121+289+121=\mathrm{AC}^{2}+676$
$A C^{2}=820-676$
$A C^{2}=144$
$\mathrm{AC}=12 \mathrm{~cm}$
Therefore, the length of the other diagonal is 12 cm .
(ii) In the following figure, secants containing chords RS and PQ of a circle intersect each other in point A in the exterior of a circle. If $\mathrm{m}(\operatorname{arc} \mathrm{PCR})=26^{\circ}, \mathrm{m}(\operatorname{arc} \mathrm{QDS})=48^{\circ}$, then find:
a. $\mathrm{m} \angle \mathrm{PQR}$
b. $m \angle S P Q$
c. $m \angle R A Q$

Solution:

Given,
$\mathrm{m}(\operatorname{arc} \mathrm{PCR})=26^{\circ}$
$\mathrm{m}(\operatorname{arc} \mathrm{QDS})=48^{\circ}$
By the inscribed angle theorem,
a. $\angle \mathrm{PQR}=1 / 2 \times \mathrm{m}(\operatorname{arc} \mathrm{PCR})$
$=(1 / 2) \times 26^{\circ}$
$=13^{\circ}$
$\angle P Q R=\angle A Q R=13 \ldots$. (i)
b. $\angle \mathrm{SPQ}=1 / 2 \times \mathrm{m}(\operatorname{arc} \mathrm{QDS})$
$=(1 / 2) \times 48^{\circ}$
$=24^{\circ}$
$\angle \mathrm{SPQ}=24^{\circ}$
c. In triangle AQR ,
$\angle R A Q+\angle A Q R=\angle S R Q$ (remote interior angle theorem)
$\angle S R Q=\angle S P Q$ (angles subtended by the same arc)
Therefore,
$\angle \mathrm{RAQ}+\angle \mathrm{AQR}=\angle \mathrm{SPQ}$
$m \angle R A Q=m \angle S P Q-m \angle A Q R$
$=24^{\circ}-13^{\circ}$ [From (i) and (ii)]
$=11^{\circ}$
$\mathrm{m} \angle \mathrm{RAQ}=11^{\circ}$
(iii) Draw a circle of radius 3.5 cm . Take any point K on it. Draw a tangent to the circle at K without using centre of the circle.

Solution:

Therefore, XKX ' is the required tangent to the circle with a radius of 3.5 cm .
(iv) If $\sec \alpha=2 / \sqrt{ } 3$, then find the value of $(1-\operatorname{cosec} \alpha) /(1+\operatorname{cosec} \alpha)$, where α is in IV quadrant.

Solution:

Given,
$\sec \alpha=2 / \sqrt{3}$
Thus, $\sec \alpha=r / x=2 / \sqrt{ } 3$
Let $\mathrm{r}=2 \mathrm{k}$ and $\mathrm{x}=\sqrt{ } 3 \mathrm{k}$
We know that,

The Learning App
$r^{2}=x^{2}+y^{2}$
$(2 k)^{2}=(\sqrt{ } 3 k)^{2}+y^{2}$
$\mathrm{y}^{2}=4 \mathrm{k}^{2}-3 \mathrm{k}^{2}$
$y^{2}=k^{2}$
$y= \pm k$
Given that α lies in quadrant IV.
Therefore, $\mathrm{y}=-\mathrm{k}$
$\operatorname{cosec} \alpha=r / y=2 k /-k=-2$
Now,
$(1-\operatorname{cosec} \alpha) /(1+\operatorname{cosec} \alpha)$
$=[1-(-2)] /[1+(-2)]$
$=(1+2) /(1-2)$
$=-3$
(v) Write the equation of the line passing through the pair of points $(2,3)$ and $(4,7)$ in the form of $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.

Solution:

Let the given points be:
$\mathrm{A}(2,3)=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$B(4,7)=\left(x_{2}, y_{2}\right)$
Equation of the line passing through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is:
$\left(\mathrm{x}-\mathrm{x}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=\left(\mathrm{y}-\mathrm{y}_{1}\right) /\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)$
$(\mathrm{x}-2) /(4-2)=(\mathrm{y}-3) /(7-3)$
$(\mathrm{x}-2) / 2=(\mathrm{y}-3) / 4$
$4(\mathrm{x}-2)=2(\mathrm{y}-3)$
$4 \mathrm{x}-8=2 \mathrm{y}-6$
$4 x-8-2 y+6=0$
$4 \mathrm{x}-2 \mathrm{y}-2=0$
$2(2 x-y-1)=0$
$2 \mathrm{x}-\mathrm{y}-1=0$
$y=2 x-1$
This is of the form $y=m x+c[m=2, c=-1]$
Hence, the required equation of line is $y=2 x-1$.
4. Solve any two sub-questions:
(i) Prove that "The length of the two tangent segments to a circle drawn from an external point are equal".

Solution:

Given,
Given,
$P Q$ and $P R$ are the tangents to the circle with centre O from an external point P.
To prove: $\mathrm{PQ}=\mathrm{PR}$
Construction:
Join OQ, OR and OP.

Proof:
We know that the radius is perpendicular to the tangent through the point of contact.
$\angle O Q P=\angle O R P=90^{\circ}$
In right $\triangle \mathrm{OQP}$ and ORP,
$\mathrm{OQ}=\mathrm{OR}$ (radii of the same circle)
$\mathrm{OP}=\mathrm{OP}$ (common)
By RHS congruence criterion,
$\triangle \mathrm{OQP} \cong \triangle \mathrm{ORP}$
By CPCT,
$P Q=P R$
Hence proved.
(ii) A person standing on the bank of a river observes that the angle of elevation of the top of a tree standing on the opposite bank is 60°. When he moves 40 m away from the bank, he finds the angle of elevation to be 30°. Find the height of the tree and width of the river. $(\sqrt{ } 3=1.73)$

Solution:

Let $A B$ be the tree and $B C$ be the width of the river.

$\mathrm{CD}=40 \mathrm{~m}$
$\mathrm{BC}=\mathrm{x}$ and $\mathrm{AB}=\mathrm{h}$
In right triangle ABC ,
$\tan 60^{\circ}=\mathrm{AB} / \mathrm{BC}$
$\sqrt{3}=h / x$
$h=\sqrt{ } 3 x \ldots$... (i)

In right triangle ABD ,
$\tan 30^{\circ}=\mathrm{AB} / \mathrm{BD}$
$1 / \sqrt{3}=h /(x+40)$
$x+40=h \sqrt{3}$
$x+40=(\sqrt{ } 3 x) \sqrt{ } 3[$ From (i)]
$\mathrm{x}+40=3 \mathrm{x}$
$2 \mathrm{x}=40$
$\mathrm{x}=20 \mathrm{~m}$
Substituting $\mathrm{x}=20$ in (i),
$\mathrm{h}=20 \sqrt{3}$
$=20 \times 1.73$
$=34.6 \mathrm{~m}$
Therefore, the height of the tree is 34.6 m and the width of the river is 20 m .
(iii) $\mathrm{A}(5,4), \mathrm{B}(-3,-2)$ and $\mathrm{C}(1,-8)$ are the vertices of a triangle ABC . Find the equations of median AD and the line parallel to AC passing through point B .

Solution:

Given,
Vertices of a triangle ABC are $\mathrm{A}(5,4), \mathrm{B}(-3,-2)$ and $\mathrm{C}(1,-8)$.
$\mathrm{A}(5,4)=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$\mathrm{B}(-3,-2)=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
$\mathrm{C}(1,-8)=\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$
Let $\mathrm{D}(\mathrm{x}, \mathrm{y})$ be the median of triangle ABC .

D is the midpoint of BC .
$\mathrm{D}(\mathrm{x}, \mathrm{y})=\left[\left(\mathrm{x}_{2}+\mathrm{x}_{3}\right) / 2,\left(\mathrm{y}_{2}+\mathrm{y}_{3}\right) / 2\right]$
$=[(-3+1) / 2,(-2-8) / 2]$
$=(-2 / 2,-10 / 2)$
$=(-1,-5)$
$D(-1,-5)=\left(x_{4}, y_{4}\right)$
Equation of median AD is
$\left(\mathrm{x}-\mathrm{x}_{1}\right) /\left(\mathrm{x}_{4}-\mathrm{x}_{1}\right)=\left(\mathrm{y}-\mathrm{y}_{1}\right) /\left(\mathrm{y}_{4}-\mathrm{y}_{1}\right)$
$(x-5) /(-1-5)=(y-4) /(-5-4)$
$(x-5) /(-6)=(y-4)(-9)$
$-9(x-5)=-6(y-4)$
$-9 x+45=-6 y+24$
$9 x-45-6 y+24=0$
$9 x-6 y-21=0$

The Learning App
$3(3 x-2 y-7)=0$
$3 x-2 y-7=0$
Hence, the required equation of median $A D$ is $3 x-2 y-7=0$.
We know that the line parallel to $A C=$ Slope of $A C$
Slope of $A B=\left(y_{3}-y_{1}\right) /\left(x_{3}-x_{1}\right)$
$=(-8-4) /(1-5)$
$=-12 /-4$
$=3$
Thus, $\mathrm{m}=3$
Equation of the line parallel to $A C$ and passing through the point $B(-3,-2)$ is
$y-y_{2}=m\left(x-x_{2}\right)$
$y-(-2)=3[x-(-3)]$
$y+2=3 x+9$
$3 x+9-y-2=0$
$3 x-y+7=0$
5. Solve any two sub-questions:
(i) In the following figure, $A E=E F=A F=B E=C F=a, A T \perp B C$. Show that $A B=A C=\sqrt{3} \times a$

Solution:

Given,
$\mathrm{AE}=\mathrm{EF}=\mathrm{AF}=\mathrm{BE}=\mathrm{CF}$
$A T \perp E F$
$\triangle \mathrm{AEF}$ is an equilateral triangle.
$\mathrm{ET}=\mathrm{TF}=\mathrm{a} / 2$
$\mathrm{BT}=\mathrm{CT}=\mathrm{a}+(\mathrm{a} / 2) \ldots$. i$)$
In right triangle ATB and ATC,
$\mathrm{AT}=\mathrm{AT}$ (common)
$\angle \mathrm{ATB}=\angle \mathrm{ATC}$ (right angles)
$\mathrm{BT}=\mathrm{CT}$ [From (i)]
By SAS congruence criterion,
$\triangle \mathrm{ATB} \cong \triangle \mathrm{ATC}$
BY СРСТ,
$\mathrm{AB}=\mathrm{AC}$
In triangle AEF ,
$\mathrm{AE}=\mathrm{AF}=\mathrm{EF}$ (given)
$\triangle \mathrm{AEF}$ is an equilateral triangle.
Altitude of an equilateral triangle $=\mathrm{AT}=(\sqrt{ } 3 / 2) \mathrm{a}$
In right triangle ATB,
$\mathrm{AB}^{2}=\mathrm{AT}^{2}+\mathrm{BT}^{2}$
$=[(\sqrt{ } 3 / 2) a]^{2}+[a+(a / 2)]^{2}$
$=\left(3 a^{2} / 4\right)+(3 a / 2)^{2}$
$=\left(3 a^{2} / 4\right)+\left(9 a^{2} / 4\right)$
$=12 \mathrm{a}^{2} / 4$
$=3 \mathrm{a}^{2}$
$A B=\sqrt{ } 3 a$
Therefore, $A B=A C=\sqrt{ } 3 \times a$
(ii) $\Delta \mathrm{SHR} \sim \Delta \mathrm{SVU}$. In $\Delta \mathrm{SHR}, \mathrm{SH}=4.5 \mathrm{~cm}, \mathrm{HR}=5.2 \mathrm{~cm}, \mathrm{SR}=5.8 \mathrm{~cm}$ and $\mathrm{SH} / \mathrm{SV}=3 / 5$. Construct Δ SVU.

Solution:

(iii) Water flows at the rate of 15 m per minute through a cylindrical pipe, having the diameter 20 mm . How much time will it take to fill a conical vessel of base diameter 40 cm and depth 45 cm ?

Solution:

Given,
Diameter of cylindrical pipe $=20 \mathrm{~mm}$
Radius of the cylindrical pipe $=\mathrm{r}=20 / 2=10 \mathrm{~mm}=1 \mathrm{~cm}$
Speed of water $=\mathrm{h}=15 \mathrm{~m}$ per minute $=1500 \mathrm{~cm} / \mathrm{min}$
Volume of cylindrical pipe $=$ Volume of water flowing per minute
$=\pi r^{2} \mathrm{~h}$
$=(22 / 7) \times 1 \times 1 \times 1500$
$=33000 / 7 \mathrm{~cm}^{3}$
Also,
Diameter of conical vessel $=40 \mathrm{~cm}$
Radius of conical vessel $=\mathrm{R}=40 / 2=20 \mathrm{~cm}$
Depth $=\mathrm{H}=45$
Capacity of the conical vessel $=$ Volume of cone
$=(1 / 3) \pi \mathrm{R}^{2} \mathrm{H}$
$=(1 / 3) \times(22 / 7) \times 20 \times 20 \times 45$
$=396000 / 21 \mathrm{~cm}^{3}$
Time required to fill the vessel $=$ Volume of conical vessel/ Volume of water flowing per minute
$=(396000 / 21) /(33000 / 7)$
$=(396000 \times 7) /(21 \times 33000)$
$=4$
Hence, the time required to fill the conical vessel is 4 min .

