MSBSHSE Class 10 Mathematics Question Paper 2018 Geometry Paper with Solutions

PART - A

1. Attempt any five sub-questions from the following:
(i) $\Delta \mathrm{DEF} \sim \triangle \mathrm{MNK}$. If $\mathrm{DE}=5$ and $\mathrm{MN}=6$, then find the value of $\mathrm{A}(\triangle \mathrm{DEF}) / \mathrm{A}(\triangle \mathrm{MNK})$.

Solution:

Given,
$\triangle \mathrm{DEF} \sim \triangle \mathrm{MNK}$
$\mathrm{DE}=5, \mathrm{MN}=6$
We know that the ratio of areas of similar triangles is equal to squares of ratio of their corresponding sides.
$\mathrm{A}(\Delta \mathrm{DEF}) / \mathrm{A}(\Delta \mathrm{MNK})=\mathrm{DE}^{2} / \mathrm{MN}^{2}$
$=(5)^{2} /(6)^{2}$
$=25 / 36$
(ii) If two circles with radii 8 cm and 3 cm respectively touch externally, then find the distance between their centres.

Solution:

Given,
Two circles with radii 8 cm and 3 cm respectively touch externally.
Distance between their centre $=$ Sum of the radii
$=8+3$
$=11 \mathrm{~cm}$
(iii) Find the length of the altitude of an equilateral triangle with side 6 cm .

Solution:

Let $A B C$ be an equilateral triangle with side 6 cm .
AD be the altitude of triangle ABC .

In right triangle ADC , $\sin 60^{\circ}=\mathrm{AD} / \mathrm{AC}$
$(\sqrt{3} / 2) \times A C=A D$
$\Rightarrow A D=(\sqrt{ } 3 / 2) \times 6$
$=3 \sqrt{3} \mathrm{~cm}$

Alternative method:

Altitude of an equilateral triangle $=(\sqrt{ } 3 / 2) \times$ side
$=(\sqrt{ } 3 / 2) \times 6$
$=3 \sqrt{3} \mathrm{~cm}$
(iv) If $\theta=45^{\circ}$, then find $\tan \theta$.

Solution:

Given,
$\theta=45^{\circ}$
$\tan \theta=\tan 45^{\circ}=1$
(v) Slope of a line is 3 and y intercept is -4 . Write the equation of a line.

Solution:

Given,
Slope of a line $=m=3$
y intercept $=\mathrm{c}=-4$
Equation of line having slope m and y -intercept c is
$y=m x+c$
Hence, the required equation of line is $y=3 x-4$.
(vi) Using Euler's formula, find V, if $E=30, F=12$.

Solution:

Given,
$\mathrm{E}=30, \mathrm{~F}=12$
Using Euler's formula,
$\mathrm{F}+\mathrm{V}=\mathrm{E}+2$
$12+\mathrm{V}=30+2$
$\mathrm{V}=32-12$
$V=20$
2. Attempt any four sub-questions from the following:
(i) The ratio of the areas of two triangles with common base is $4: 3$. Height of the larger triangle is 6 cm , then find the corresponding height of the smaller triangle.

Solution:

Let H be the height of the larger triangle and h be the height of the smaller triangle.
We know that the ratio of the areas of two triangles with common base is equal to the ratio of their corresponding heights.
$\Rightarrow 4 / 3=\mathrm{H} / \mathrm{h}$
$\Rightarrow 4 / 3=6 / \mathrm{h}$ (given height of the larger triangle is 6 cm)
$\Rightarrow \mathrm{h}=(6 \times 3) / 4$
$\Rightarrow \mathrm{h}=9 / 2=4.5 \mathrm{~cm}$
Hence, the corresponding height of the smaller triangle is 4.5 cm .
(ii) In the following figure, point ' A ' is the centre of the circle. Line MN is tangent at point M . If $\mathrm{AN}=12 \mathrm{~cm}$ and $\mathrm{MN}=6 \mathrm{~cm}$, determine the radius of the circle.

Solution:

Given,
$\mathrm{AN}=12 \mathrm{~cm}$
$\mathrm{MN}=6 \mathrm{~cm}$
We know that the radius is perpendicular to the tangent through the point of contact.
Thus, $\angle \mathrm{AMN}=90^{\circ}$
In right triangle AMN,
$\mathrm{AN}^{2}=\mathrm{AM}^{2}+\mathrm{MN}^{2}$
$(12)^{2}=\mathrm{AM}^{2}+(6)^{2}$
$\Rightarrow \mathrm{AM}^{2}=144-36$
$=108$
$\Rightarrow A M=\sqrt{ } 108=6 \sqrt{ } 3$
Hence, the radius of the circle is $6 \sqrt{ } 3 \mathrm{~cm}$.
(iii) Draw $\angle \mathrm{PQR}$ of measure 70° and bisect it.

Solution:

Therefore, $\angle P Q R=70^{\circ}$ and QC is the bisector of it.
(iv) If $\cos \theta=3 / 5$, where ' θ ' is an acute angle. Find the value of $\sin \theta$.

Solution:

Given,
$\cos \theta=3 / 5$
$\sin \theta=\sqrt{ }\left(1-\cos ^{2} \theta\right)$
$=\sqrt{ }\left[1-(3 / 5)^{2}\right]$
$=\sqrt{ }[1-(9 / 25)]$
$=\sqrt{ }[(25-9) / 25$
$=\sqrt{ }(16 / 25)$
$=4 / 5$ (given that θ is an acute angle.
Therefore, $\sin \theta=4 / 5$
(v) The volume of a cube is $1000 \mathrm{~cm}^{3}$. Find its side.

Solution:

Given,
Volume of cube $=1000 \mathrm{~cm}^{3}$
$\Rightarrow(\text { side })^{3}=(10)^{3}$
\Rightarrow Side $=10 \mathrm{~cm}$
(vi) The radius and slant height of a cone are 4 cm and 25 cm respectively. Find the curved surface area of that cone. $(\pi=3.14)$

Solution:

Given,
Radius of cone $=r=4 \mathrm{~cm}$
Slant height $=1=25 \mathrm{~cm}$
Curved surface area of cone $=\pi \mathrm{rl}$
$=3.14 \times 4 \times 25$
$=314 \mathrm{~cm}^{2}$
3. Attempt any three sub-questions from the following:
(i) In the following figure, seg $\mathrm{DH} \perp$ seg EF and seg GK \perp seg EF. If $\mathrm{DH}=6 \mathrm{~cm}, G K=10 \mathrm{~cm}$ and $A(\triangle D E F)=150 \mathrm{~cm}^{2}$, then find :
i. EF
ii. $\mathrm{A}(\triangle \mathrm{GEF})$
iii. $\mathrm{A}(\triangle \mathrm{DFGE})$.

Solution:

Given,
DH $=6 \mathrm{~cm}$
$\mathrm{GK}=10 \mathrm{~cm}$
$\mathrm{A}(\triangle \mathrm{DEF})=150 \mathrm{~cm}^{2}$
i. $\mathrm{A}(\triangle \mathrm{DEF})=(1 / 2) \times \mathrm{EF} \times \mathrm{DH}$
$150=(1 / 2) \times \mathrm{EF} \times 6$
$\Rightarrow E F \times 3=150$
$\Rightarrow E F=150 / 3$
$\Rightarrow E F=50 \mathrm{~cm}$
ii. $\triangle \mathrm{DEF}$ and $\triangle \mathrm{GEF}$ have the common base EF.

Therefore, their areas are proportional to their corresponding heights.
$\mathrm{A}(\triangle \mathrm{DEF}) / \mathrm{A}(\triangle \mathrm{GEF})=\mathrm{DH} / \mathrm{GK}$
150/ $\mathrm{A}(\Delta \mathrm{GEF})=6 / 10$
$\Rightarrow A(\Delta G E F)=(150 \times 10) / 6=250$
$\mathrm{A}(\triangle \mathrm{GEF})=250 \mathrm{~cm}^{2}$
iii. $\mathrm{A}(\mathrm{DFGE})=\mathrm{A}(\triangle \mathrm{DEF})+\mathrm{A}(\Delta \mathrm{GEF})$
$=150+250$
$=400 \mathrm{~cm}^{2}$
(ii) In the following figure, ray PA is the tangent to the circle at point A and PBC is a secant. If $\mathrm{AP}=14, \mathrm{BP}=10$, then find BC.

Solution:

Given,
PA is the tangent to the circle at point A and PBC is a secant.
$\mathrm{AP}=14, \mathrm{BP}=10$
We know that,
$\mathrm{PB} \times \mathrm{PC}=\mathrm{PA}^{2}$
$10 \times \mathrm{PC}=(14)^{2}$
$\mathrm{PC}=196 / 10$
$\mathrm{PC}=19.6$
Now,
$\mathrm{PB}+\mathrm{BC}=\mathrm{PC}$
$10+B C=19.6$
$B C=19.6-10$
$\mathrm{BC}=9.6 \mathrm{~cm}$
(iii) Draw the circle with centre C and radius 3.6 cm . Take point B which is at distance 7.2 cm from the centre. Draw tangents to the circle from point B .

Solution:

Therefore, BP and BQ are the required tangents to the circle.
(iv) Show that: $\sqrt{ }[(1-\sin x) /(1+\sin x)]=\sec x-\tan x$

Solution:

$$
\begin{aligned}
\text { LHS } & =\sqrt{\frac{1-\sin x}{1+\sin x}} \\
& =\sqrt{\frac{(1-\sin x)^{2}}{(1+\sin x)(1-\sin x)}} \\
& =\sqrt{\frac{(1-\sin x)^{2}}{1-\sin ^{2} x}} \\
& =\frac{\sqrt{(1-\sin x)^{2}}}{\sqrt{\cos ^{2} x}} \\
& =\frac{1-\sin x}{\cos x} \\
& =\frac{1}{\cos x}-\frac{\sin x}{\cos x} \\
& =\sec x-\tan x \\
& =\text { RHS }
\end{aligned}
$$

(v) Write the equation of the line passing through points $\mathrm{C}(4,-5)$ and $\mathrm{D}(-1,-2)$ in the form of $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$.

Solution:

Let the given points be:
$C(4,-5)=\left(x_{1}, y_{1}\right)$
$\mathrm{D}(-1,-2)=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
Equation of the line passing through the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is:
$\left(\mathrm{x}-\mathrm{x}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=\left(\mathrm{y}-\mathrm{y}_{1}\right) /\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)$
$(\mathrm{x}-4) /(-1-4)=(\mathrm{y}+5) /(-2+5)$
$(\mathrm{x}-4) /(-5)=(\mathrm{y}+5) / 3$
$3(\mathrm{x}-4)=-5(\mathrm{y}+5)$
$3 \mathrm{x}-12=-5 \mathrm{y}-25$
$3 \mathrm{x}+5 \mathrm{y}-12+25=0$
$3 \mathrm{x}+5 \mathrm{y}+13=0$
This
This is of the form $a x+b y+c=0$
Hence, the required equation of the line $C D$ is $3 x+5 y+13=0$.
4. Attempt any two sub-questions from the following:
(i) Prove that, "the lengths of the two tangent segments to a circle drawn from an external point are equal".

Solution:

Given,
Given,
$P Q$ and $P R$ are the tangents to the circle with centre O from an external point P.
To prove: $\mathrm{PQ}=\mathrm{PR}$
Construction:
Join OQ, OR and OP.

Proof:
We know that the radius is perpendicular to the tangent through the point of contact.
$\angle O Q P=\angle O R P=90^{\circ}$
In right $\triangle \mathrm{OQP}$ and ORP,
$\mathrm{OQ}=\mathrm{OR}$ (radii of the same circle)
$\mathrm{OP}=\mathrm{OP}$ (common)
By RHS congruence criterion,
$\triangle \mathrm{OQP} \cong \triangle \mathrm{ORP}$
By CPCT,
$P Q=P R$
Hence proved.
(ii) A tree is broken by the wind. The top of that tree struck the ground at an angle of 30° and at a distance of 30 m from the root. Find the height of the whole tree. $(\sqrt{3}=1.73)$

Solution:

Let D be the top of the tree and $A B$ be the unbroken part of the tree.
$\mathrm{DA}=\mathrm{AC}=$ Broken part of the tree

$\mathrm{BC}=30 \mathrm{~m}$
In right triangle ABC , $\tan 30^{\circ}=\mathrm{AB} / \mathrm{BC}$
$1 / \sqrt{ } 3=A B / 30$
$\Rightarrow A B=30 / \sqrt{ } 3$

BYJU'S
The Learning App
Again in triangle ABC ,
$\cos 30^{\circ}=\mathrm{BC} / \mathrm{AC}$
$\sqrt{ } 3 / 2=30 / A C$
$\Rightarrow A C=(302) / \sqrt{3}$
$\Rightarrow A C=60 / \sqrt{3} 3$
Also, $A C=A D=60 / \sqrt{ } 3 \mathrm{~m}$
Total height of the tree $=B D$
$=\mathrm{DA}+\mathrm{AB}$
$=(60 / \sqrt{ } 3)+(30 / \sqrt{ } 3)$
$=90 / \sqrt{ } 3$
$=(90 / \sqrt{3}) \times(\sqrt{3} / \sqrt{ } 3)$
$=(90 \sqrt{ } 3) / 3$
$=30 \sqrt{ } 3$
$=30 \times 1.73$
$=51.9 \mathrm{~m}$
Hence, the height of the whole tree is 51.9 m .
(iii) $\mathrm{A}(5,4), \mathrm{B}(-3,-2)$ and $\mathrm{C}(1,-8)$ are the vertices of a triangle ABC . Find the equation of median AD .

Solution:

Given,
Vertices of a triangle ABC are $\mathrm{A}(5,4), \mathrm{B}(-3,-2)$ and $\mathrm{C}(1,-8)$.
$\mathrm{A}(5,4)=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$\mathrm{B}(-3,-2)=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
$\mathrm{C}(1,-8)=\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)$
Let $\mathrm{D}(\mathrm{x}, \mathrm{y})$ be the median of triangle ABC .

D is the midpoint of BC.
$\mathrm{D}(\mathrm{x}, \mathrm{y})=\left[\left(\mathrm{x}_{2}+\mathrm{x}_{3}\right) / 2,\left(\mathrm{y}_{2}+\mathrm{y}_{3}\right) / 2\right]$
$=[(-3+1) / 2,(-2-8) / 2]$
$=(-2 / 2,-10 / 2)$
$=(-1,-5)$
$\mathrm{D}(-1,-5)=\left(\mathrm{x}_{4}, \mathrm{y}_{4}\right)$
Equation of median AD is
$\left(\mathrm{x}-\mathrm{x}_{1}\right) /\left(\mathrm{x}_{4}-\mathrm{x}_{1}\right)=\left(\mathrm{y}-\mathrm{y}_{1}\right) /\left(\mathrm{y}_{4}-\mathrm{y}_{1}\right)$
$(x-5) /(-1-5)=(y-4) /(-5-4)$
$(x-5) /(-6)=(y-4)(-9)$
$-9(x-5)=-6(y-4)$
$-9 x+45=-6 y+24$
$9 x-45-6 y+24=0$
$9 x-6 y-21=0$
$3(3 x-2 y-7)=0$
$3 x-2 y-7=0$
Hence, the required equation of median $A D$ is $3 x-2 y-7=0$.
5. Attempt any two sub-questions from the following:
(i) Prove that, in a right-angled triangle, the square of hypotenuse is equal to the sum of the square of remaining two sides.

Solution:

Given:
In a right triangle $\mathrm{ABC}, \angle \mathrm{B}=90^{\circ}$
To prove:
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
Construction:
Draw a perpendicular BD onto the side AC .

We know that,
$\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC}$
Therefore, $\mathrm{AD} / \mathrm{AB}=\mathrm{AB} / \mathrm{AC}$ (by similarity)
$\mathrm{AB}^{2}=\mathrm{AD} \times \mathrm{AC} \ldots .$. (i)
Also, $\triangle \mathrm{BDC} \sim \triangle \mathrm{ABC}$
Therefore, $\mathrm{CD} / \mathrm{BC}=\mathrm{BC} / \mathrm{AC}$ (by similarity)
$\mathrm{BC}^{2}=\mathrm{CD} \times \mathrm{AC} \ldots$...ii)
Adding (i) and (ii),
$A B^{2}+\mathrm{BC}^{2}=\mathrm{AD} \times \mathrm{AC}+\mathrm{CD} \times \mathrm{AC}$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}(\mathrm{AD}+\mathrm{CD})$
Since, $A D+C D=A C$

Therefore, $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
Hence proved.
(ii) $\Delta \mathrm{SHR} \sim \Delta \mathrm{SVU}$, in $\Delta \mathrm{SHR}, \mathrm{SH}=4.5 \mathrm{~cm}, \mathrm{HR}=5.2 \mathrm{~cm}, \mathrm{SR}=5.8 \mathrm{~cm}$ and $\mathrm{SH} / \mathrm{SV}=3 / 5$. Construct $\Delta \mathrm{SVU}$.

Solution:

(iii) If ' V ' is the volume of a cuboid of dimensions $a \times b \times c$ and ' S ' is its surface area, then prove that: $1 / V=2 / S$ $[(1 / \mathrm{a})+(1 / \mathrm{b})+(1 / \mathrm{c})]$

Solution:

Given,
Dimensions of the cuboid $=\mathrm{a} \times \mathrm{b} \times \mathrm{c}$
Volume of cuboid $=\mathrm{V}=\mathrm{abc}$
$\Rightarrow 1 / V=1 / a b c . \ldots$.(i)
Surface area of cuboid $=\mathrm{S}=2(\mathrm{ab}+\mathrm{bc}+\mathrm{ca}) \ldots$...(ii)
RHS $=2 / \mathrm{S}[(1 / \mathrm{a})+(1 / \mathrm{b})+(1 / \mathrm{c})]$
$=2 / \mathrm{S}[(\mathrm{bc}+\mathrm{ca}+\mathrm{ab}) / \mathrm{abc}]$
$=[2(a b+b c+c a)] / S(a b c)$
$=\mathrm{S} / \mathrm{S}(\mathrm{abc})$ [From (ii)]
$=1 / \mathrm{abc}$
$=1 / \mathrm{V}$ [From (i)]
$=$ LHS
Hence proved.

