MSBSHSE Class 10 Mathematics Question Paper 2019 Paper II with Solutions

1. (A) Solve the following questions (Any four): [4]
i. If $\triangle A B C \sim \triangle P Q R$ and $\angle A=60^{\circ}$, then $\angle P=$?

Solution:

Given,
$\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
We know that the corresponding angles of similar triangles are equal.
Therefore, $\angle \mathrm{A}=\angle \mathrm{P}=60^{\circ}$
ii. In right-angled $\triangle A B C$, if $\angle B=90^{\circ}, A B=6, B C=8$, then find $A C$.

Solution:

Given,
In right-angled $\triangle \mathrm{ABC}$:
$\angle B=90^{\circ}, A B=6, B C=8$
$\mathrm{AC}=$ Hypotenuse
By Pythagoras theorem,
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
$=(6)^{2}+(8)^{2}$
$=36+64$
$=100$
$\mathrm{AC}=10$
iii. Write the length of the largest chord of a circle with a radius of 3.2 cm .

Solution:

Given,
Radius of circle $=3.2 \mathrm{~cm}$
We know that the longest chord of a circle is the diameter of that circle.
Diameter $=2 \times$ Radius
$=2 \times 3.2$
$=6.4 \mathrm{~cm}$
Hence, the length of the largest chord of a circle is 6.4 cm .
iv. From the given number line, find $d(A, B)$:

Solution:

The Learning App
From the given,
Coordinate of $\mathrm{A}=-3$
Coordinate of $\mathrm{B}=3$
$3>-3$
$\mathrm{d}(\mathrm{A}, \mathrm{B})=$ Greater coordinate - Smaller coordinate
$=3-(-3)$
$=3+3$
$=6$ units
v. Find the value of $\sin 30^{\circ}+\cos 60^{\circ}$.

Solution:

$\sin 30^{\circ}+\cos 60^{\circ}$
$=(1 / 2)+(1 / 2)$
$=(1+1) / 2$
$=2 / 2$
$=1$
vi. Find the area of a circle of radius 7 cm .

Solution:

Given,
Radius of circle $=\mathrm{r}=7 \mathrm{~cm}$
Area of circle $=\pi \mathrm{r}^{2}$
$=(22 / 7) \times 7 \times 7$
$=154 \mathrm{~cm}^{2}$
(B) Solve the following questions (Any two):
i. Draw seg $A B$ of length 5.7 cm and bisect it.

Solution:

ii. In right-angled triangle $P Q R$, if $\angle P=60^{\circ}, \angle R=30^{\circ}$, and $P R=12$, then find the values of $P Q$ and $Q R$.

Solution:

Given,
$\angle \mathrm{P}=60^{\circ}, \angle \mathrm{R}=30^{\circ}$, and $\mathrm{PR}=12$
$\angle \mathrm{P}+\angle \mathrm{Q}+\angle \mathrm{R}=180^{\circ}$
$60^{\circ}+\angle \mathrm{Q}+30^{\circ}=180^{\circ}$
$\angle \mathrm{Q}=180^{\circ}-90^{\circ}$
$\angle \mathrm{Q}=90^{\circ}$
$\sin 30^{\circ}=P Q / P R$
$1 / 2=\mathrm{PQ} / 12$
$\mathrm{PQ}=12 / 2$
$\mathrm{PQ}=6$
$\cos 30^{\circ}=\mathrm{QR} / \mathrm{PR}$
$\sqrt{ } 3 / 2=$ QR/12
$Q R=(12 \sqrt{ } 3) / 2=6 \sqrt{ } 3$
iii. In a right circular cone, if the perpendicular height is 12 cm and radius is 5 cm , then find its slant height.

Solution:

Given,
The perpendicular height of right circular cone $=\mathrm{h}=12 \mathrm{~cm}$
Radius $=\mathrm{r}=5 \mathrm{~cm}$
Slant height $=1$
$=\sqrt{ }\left(r^{2}+h^{2}\right)$
$=\sqrt{ }\left[(5)^{2}+(12)^{2}\right]$
$=\sqrt{ }(25+144)$
$=\sqrt{ } 169$
$=13 \mathrm{~cm}$
Therefore, the slant height is 13 cm .
2. (A) Choose the correct alternative:
[4]
i. $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are equilateral triangles. If $\mathrm{A}(\triangle \mathrm{ABC}): \mathrm{A}(\triangle \mathrm{DEF})=1: 2$ and $\mathrm{AB}=4$, then what is the length of DE ?
(A) $2 \sqrt{ } 2$ (B) 4 (C) 8 (D) $4 \sqrt{ } 2$

Solution:

Correct answer: (D)
$\mathrm{A}(\triangle \mathrm{ABC}): \mathrm{A}(\triangle \mathrm{DEF})=1: 2$
Area of $\triangle A B C=(\sqrt{3} / 4) \times(\text { Side })^{2}$
$=(\sqrt{ } 3 / 4) \times 4^{2}$
$=4 \sqrt{ } 3$
Area of $\triangle \mathrm{DEF}=2 *$ Area of $\triangle \mathrm{ABC}$
$=2 * 4 \sqrt{ } 3$
$=8 \sqrt{ } 3$
Let $\mathrm{DE}=\mathrm{EF}=\mathrm{FD}=\mathrm{x}$
Area of $\triangle D E F=(\sqrt{ } 3 / 4) \times x^{2}$
$8 \sqrt{3}=(\sqrt{3} / 4) \times x^{2}$
$\mathrm{x}^{2}=32$
$x=4 \sqrt{ } 2$
Therefore, $D E=4 \sqrt{ } 2$
ii. Out of the following which is a Pythagorean triplet?
(A) $(5,12,14)(B)(3,4,2)(C)(8,15,17)(D)(5,5,2)$

Solution:

Correct answer: (C)
By Pythagoras theorem,
$(8)^{2}+(15)^{2}$
$=64+225$
$=289$
$=(17) 2$
Therefore, $(8,15,17)$ is a Pythagorean triplet.
iii. $\angle A C B$ is inscribed in arc $A C B$ of a circle with centre O. If $\angle A C B=65^{\circ}$, find $m(\operatorname{arc} A C B)$:
(A) 130° (B) 295° (C) 230° (D) 65°

Solution:

Correct answer: (C)
Given,
$\angle A C B=65^{\circ}$

$\angle A C B=1 / 2 m(\operatorname{arc} A B)$
$m(\operatorname{arc} A B)=2 \angle A C B=2\left(65^{\circ}\right)=130^{\circ}$

The Learning App
$\mathrm{m}(\operatorname{arc} \mathrm{ACB})=360^{\circ}-\mathrm{m}(\operatorname{arcAB})$
$=360^{\circ}-130^{\circ}$
$=230^{\circ}$
iv. $1+\tan ^{2} \theta=$?
(A) $\sin ^{2} \theta$ (B) $\sec ^{2} \theta$ (C) $\operatorname{cosec}^{2} \theta$ (D) $\cot ^{2} \theta$

Solution:

Correct answer: (B)
We know that,

$$
\sec ^{2} \theta-\tan ^{2} \theta=1
$$

$$
\sec ^{2} \theta=1+\tan ^{2} \theta
$$

(B) Solve the following questions (Any two):

i. Construct a tangent to a circle with centre A and radius 3.4 cm at any point P on it .

Solution:

ii. Find the slope of a line passing through the points $A(3,1)$ and $B(5,3)$.

Solution:

Let the given points be:
$\mathrm{A}(3,1)=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$B(5,3)=\left(x_{2}, y_{2}\right)$
Slope of the line passing through the points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
$=\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right) /\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)$
$=(3-1) /(5-3)$
$=2 / 2$
$=1$
Therefore, the slope of the line AB is 1 .
iii. Find the surface area of a sphere of radius 3.5 cm .

Solution:

Given,
Radius of the sphere $=r=3.5 \mathrm{~cm}$
The surface area of the sphere $=4 \pi \mathrm{r}^{2}$
$=4 \times(22 / 7) \times 3.5 \times 3.5$
$=154 \mathrm{~cm}^{2}$
Therefore, the surface area of the sphere is $154 \mathrm{~cm}^{2}$.
3. (A) Complete the following activities (Any two):
i.

In $\triangle \mathrm{ABC}$, ray BD bisects $\angle \mathrm{ABC}$.
If $A-D-C, A-E-B$ and seg $E D \|$ side $B C$, then prove that: $\frac{A B}{B C}=\frac{A E}{E B}$.

Proof:

In $\triangle A B C$, ray $B D$ is bisector of $\angle A B C$.

$$
\begin{array}{lll}
\therefore & \frac{\mathrm{AB}}{\mathrm{BC}}=\square \\
& \text { In } \triangle \mathrm{ABC}, \text { seg } \mathrm{DE} \| \text { side } \mathrm{BC} & \ldots \text { (i)(By angle bisector theorem) } \\
\therefore & \frac{\mathrm{AE}}{\mathrm{~EB}}=\frac{\mathrm{AD}}{\mathrm{DC}} & \ldots \text { (ii) } \square \tag{ii}\\
\therefore & \frac{\mathrm{AB}}{\square}=\frac{\square}{\mathrm{EB}} & \ldots[\text { From (i) and (ii)] }
\end{array}
$$

Solution:

Proof:

In $\triangle A B C$, ray $B D$ is bisector of $\angle A B C$.
$\therefore \quad \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{AD}}{\mathrm{DC}}$
...(i)(By angle bisector theorem)
In $\triangle A B C$, seg $D E \|$ side $B C$

$$
\therefore \quad \frac{\mathrm{AE}}{\mathrm{~EB}}=\frac{\mathrm{AD}}{\mathrm{DC}}
$$

...(ii) Midpoint theorem

$$
\therefore \quad \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{\mathrm{AE}}{\mathrm{~EB}}
$$

$\ldots[$ From (i) and (ii)]
ii.

Prove that, angles inscribed in the same arc are congruent.
Given: $\quad \angle \mathrm{PQR}$ and $\angle \mathrm{PSR}$ are inscribed in the same arc.
Arc PXR is intercepted by the angles.
To prove: $\angle \mathrm{PQR} \cong \angle \mathrm{PSR}$
Proof:

$$
\begin{array}{lll}
& \mathrm{m} \angle \mathrm{PQR}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \operatorname{PXR}) & \ldots(\text { (i) } \square \tag{i}\\
& \mathrm{m} \angle \square=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \operatorname{PXR}) & \ldots \text { (ii) } \square \\
\therefore & \mathrm{m} \angle \square=\mathrm{m} \angle \mathrm{PSR} & \ldots[\text { (From (i) and (ii) }] \\
\therefore & \angle \mathrm{PQR} \cong \angle \mathrm{PSR} & \ldots \text { (Angles equal in measure are congruent) }
\end{array}
$$

Solution:

Proof:

$$
\begin{array}{lll}
& \mathrm{m} \angle \mathrm{PQR}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \mathrm{PXR}) & \ldots \text { (i) Inscribed angle th. } \\
& \mathrm{m} \angle \mathrm{PSR}=\frac{1}{2} \mathrm{~m}(\operatorname{arc} \operatorname{PXR}) & \ldots \text { (ii) Inscribed angle th. } \\
\therefore & \mathrm{m} \angle \mathrm{PQR}=\mathrm{m} \angle \mathrm{PSR} & \ldots \text { [From (i) and (ii)] } \\
\therefore & \angle \mathrm{PQR} \cong \angle \mathrm{PSR} & \ldots \text { (Angles equal in measure are congruent) }
\end{array}
$$

iii. How many solid cylinders of radius 6 cm and height 12 cm can be made by melting a solid sphere of radius 18
cm ?
Activity: Radius of the sphere, $\mathrm{r}=18 \mathrm{~cm}$
For cylinder, radius $\mathrm{R}=6 \mathrm{~cm}$, height $\mathrm{H}=12 \mathrm{~cm}$
$\therefore \quad$ Number of cylinders can be made $=\frac{\text { Volume of the sphere }}{\square}$

$$
\begin{aligned}
& =\frac{\frac{4}{3} \pi r^{3}}{\square} \\
& =\frac{\frac{4}{3} \times 18 \times 18 \times 18}{\square} \\
& =\square
\end{aligned}
$$

Solution:
$\therefore \quad$ Number of cylinders can be made $=\frac{\text { Volume of the sphere }}{\text { Volume of cylinder }}$

$$
\begin{aligned}
& =\frac{\frac{4}{3} \pi r^{3}}{\boxed{\pi r^{2} h}} \\
& =\frac{\frac{4}{3} \times 18 \times 18 \times 18}{4 \times 6 \times 12} \\
& =18
\end{aligned}
$$

(B) Solve the following questions (Any two):
[4]
i. In right-angled $\triangle A B C, B D \perp A C$.

If $A D=4, D C=9$, then find $B D$.

Solution:

Given,
$B D \perp A C$ in the right triangle $A B C$.
$\mathrm{AD}=4, \mathrm{DC}=9$
$\mathrm{BD}^{2}=\mathrm{AD} \times \mathrm{DC}$
$=4 \times 9$
$=36$
$B D=\sqrt{ } 36$
$\mathrm{BD}=6$
ii. Verify whether the following points are collinear or not:

A (1, -3$), \mathrm{B}(2,-5), \mathrm{C}(-4,7)$.

Solution:

Given,
A $(1,-3)=\left(x_{1}, y_{1}\right)$
B $(2,-5)=\left(x_{2}, y_{2}\right)$
C $(-4,7)=\left(x_{3}, y_{3}\right)$
Area of triangle $A B C=1 / 2\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
$=1 / 2[1(-5-7)+2(7+3)-4(-3+5)]$
$=1 / 2[-12+2(10)-4(2)]$
$=1 / 2[-12+20-8]$
$=1 / 2[20-20]$
$=1 / 2(0)$
$=0$
Therefore, the given points are collinear.
iii. If $\sec \theta=25 / 7$, then find the value of $\tan \theta$.

Solution:

Given,
$\sec \theta=25 / 7$
We know that,
$\sec ^{2} \theta-\tan ^{2} \theta=1$
$\tan ^{2} \theta=\sec ^{2} \theta-1$
$=(25 / 7)^{2}-1$
$=(625 / 49)-1$
$=(625-49) / 49$
= 576/49
$\tan ^{2} \theta=(24 / 7)^{2}$
$\tan \theta=24 / 7$
4. Solve the following questions (Any three):
i. In $\triangle \mathrm{PQR}$, seg PM is a median, $\mathrm{PM}=9$ and $\mathrm{PQ}^{2}+\mathrm{PR}^{2}=290$. Find the length of QR .

Solution:

Given,

$\mathrm{PQ}^{2}+\mathrm{PR}^{2}=290$
By Apollonius theorem,
$\mathrm{PQ}^{2}+\mathrm{PR}^{2}=2 \mathrm{PM}^{2}+2 \mathrm{QM}^{2}$
$290=2\left[(9)^{2}+\mathrm{QM}^{2}\right]$
$290 / 2=81+\mathrm{QM}^{2}$
$\mathrm{QM}^{2}=145-81$
$\mathrm{QM}^{2}=64$
$\mathrm{QM}=8$
$\mathrm{QR}=2 \times \mathrm{QM}$
$=2 \times 8$
$=16$
ii. In the given figure, O is the centre of the circle. $\angle Q P R=70^{\circ}$ and $m(\operatorname{arc} P Y R)=160^{\circ}$, then find the value of each of the following:

(a) m(arc QXR)
(b) $\angle \mathrm{QOR}$
(c) $\angle P Q R$

Solution:

Given,
$\angle Q P R=70^{\circ}$
$\mathrm{m}(\operatorname{arc} \mathrm{PYR})=160^{\circ}$
(a) \angle QPR $=1 / 2 \mathrm{~m}(\operatorname{arc}$ QXR)
$70^{\circ} \times 2=m(\operatorname{arc} \mathrm{QXR})$
$\mathrm{m}(\operatorname{arc} \mathrm{QXR})=140^{\circ}$
Now,
(b) $\angle \mathrm{QOR}=2 \angle \mathrm{QPR}$
$=2 \times 70^{\circ}$
$=140^{\circ}$
(c) $\angle \mathrm{PQR}=1 / 2 \mathrm{~m}(\operatorname{arc} \mathrm{PXR})$
$=(1 / 2) \times 160^{\circ}$
$=80^{\circ}$
iii. Draw a circle with a radius of 4.2 cm . Construct tangents to the circle from a point at a distance of 7 cm from the centre.

Solution:

Therefore, PA and PB are the tangents to the circle.
iv. When an observer at a distance of 12 m from a tree looks at the top of the tree, the angle of elevation is 60°. What is the height of the tree? $(\sqrt{ } 3=1.73)$

Solution:

Let AB be the tree and C be the point of observation.

In right triangle ABC ,
$\tan 60^{\circ}=\mathrm{AB} / \mathrm{BC}$
$\sqrt{ } 3=A B / 12$
$A B=12 \sqrt{ } 3$
$=12 \times 1.73$
$=20.76 \mathrm{~m}$
Hence, the height of the tree is 20.76 m .
5. Solve the following questions (Any one):
i. A circle with centre P is inscribed in the $\triangle A B C$. Side $A B$, side $B C$, and side $A C$ touch the circle at points L, M, and N respectively. Radius of the circle is r .

Prove that: $\mathrm{A}(\triangle \mathrm{ABC})=1 / 2(\mathrm{AB}+\mathrm{BC}+\mathrm{AC}) \times \mathrm{r}$.

Solution:

Given,
P is the centre of the circle.
Construction:
Join PL, PM, PN, and APM, BPN, CPL.

Proof:
$P M \perp B C$
$P N \perp A C$
$P L \perp A B$
$\mathrm{PM}=\mathrm{PN}=\mathrm{PN}=\mathrm{r}($ Radius of incircle $)$
$\mathrm{A}(\Delta \mathrm{ABC})=\mathrm{A}(\Delta \mathrm{APB})+(\Delta \mathrm{APC})+(\Delta \mathrm{BPC})$
$=(1 / 2) \mathrm{AB} \times \mathrm{PL}+(1 / 2) \mathrm{AC} \times \mathrm{PN}+(1 / 2) \mathrm{BC} \times \mathrm{PM}$
$=(1 / 2) \mathrm{AB} \times \mathrm{r}+(1 / 2) \mathrm{AC} \times \mathrm{r}+(1 / 2) \mathrm{BC} \times \mathrm{r}$
$=(1 / 2)[A B+A C+B C] \times r$
Hence proved.
ii. In $\triangle A B C, \angle A C B=90^{\circ}$. seg $C D \perp$ side $A B$ and seg $C E$ is the angle bisector of $\angle A C B$.

Prove that: $\mathrm{AD} / \mathrm{BD}=\mathrm{AE}^{2} / \mathrm{BE}^{2}$.

Solution:

Given,
In $\triangle \mathrm{ABC}, \angle \mathrm{ACB}=90^{\circ}$.
seg $C D \perp$ side $A B$
seg $C E$ is the angle bisector of $\angle A C B$
$\mathrm{AE} / \mathrm{EB}=\mathrm{AC} / \mathrm{CB}$ (property of angle bisector of a triangle)
$\mathrm{AE}^{2} / \mathrm{BE}^{2}=\mathrm{AC}^{2} / \mathrm{CB}^{2} \ldots$. i
In triangle ACB ,
$\mathrm{m} \angle \mathrm{ACB}=90^{\circ}$ (given)
seg $C D \perp$ hypotenuse $A B$ (given)
By RHS criterion,
$\Delta \mathrm{ACB} \sim \Delta \mathrm{ADC} \sim \Delta \mathrm{CDB}$....(ii)
Now,
$\triangle \mathrm{ADC} \sim \triangle \mathrm{ACB}$
$\mathrm{AC} / \mathrm{AB}=\mathrm{AD} / \mathrm{AC}$ (corresponding sides of similar triangles)
$\mathrm{AC}^{2}=\mathrm{AB} \times \mathrm{AD}$....(iii)
Also,
$\Delta \mathrm{CDB} \sim \Delta \mathrm{ACB}$
$\mathrm{CB} / \mathrm{AB}=\mathrm{DB} / \mathrm{CB}$ (corresponding sides of similar triangles)
$\mathrm{CB}^{2}=\mathrm{AB} \times \mathrm{CB}$....(iv)
From (i), (iii), and (iv),
$\mathrm{AE}^{2} / \mathrm{BE}^{2}=(\mathrm{AB} \times \mathrm{AD}) /(\mathrm{AB} \times \mathrm{DB})$
$\mathrm{AE}^{2} / \mathrm{BE}^{2}=\mathrm{AD} / \mathrm{DB}$
Hence proved.
6. Solve the following questions (Any one):
[3]
i. Show that the points $(2,0),(-2,0)$ and $(0,2)$ are the vertices of a triangle. Also, state with the reason the type of the triangle.

Solution:

Let the given points be:
$\mathrm{A}(2,0)=(\mathrm{x} 1, \mathrm{y} 1)$
$B(-2,0)=(x 2, y 2)$
$C(0,2)=(x 3, y 3)$
Using the distance formula,

$$
\begin{aligned}
\mathrm{AB} & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}} \\
& =\sqrt{(-2-2)^{2}+(0-0)^{2}} \\
& =\sqrt{(-4)^{2}} \\
& =\sqrt{16} \\
& =4 \\
\mathrm{AC} & =\sqrt{\left(x_{3}-x_{1}\right)^{2}+\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)^{2}} \\
& =\sqrt{(0-2)^{2}+(2-0)^{2}} \\
& =\sqrt{(-2)^{2}+(2)^{2}} \\
& =\sqrt{4+4} \\
& =\sqrt{8} \\
& =2 \sqrt{2}
\end{aligned}
$$

And

$$
\begin{aligned}
\mathrm{BC} & =\sqrt{\left(x_{3}-x_{2}\right)^{2}+\left(\mathrm{y}_{3}-\mathrm{y}_{2}\right)^{2}} \\
& =\sqrt{\left(0-(-2)^{2}\right)+(2-0)^{2}} \\
& =\sqrt{(0+2)^{2}+(2-0)^{2}} \\
& =\sqrt{(2)^{2}+(2)^{2}} \\
& =\sqrt{8} \\
& =2 \sqrt{2} \\
\text { АС } & =\mathrm{BC}
\end{aligned}
$$

Therefore, $\triangle \mathrm{ABC}$ is an isosceles triangle.
Also,
$\mathrm{AC}^{2}+\mathrm{BC}^{2}=(2 \sqrt{ } 2)^{2}+(2 \sqrt{ } 2)^{2}$
$=4(2)+4(2)$
$=8+8$
$=16$
$=4^{2}$
$=\mathrm{AB}^{2}$
Hence, it is a right angle isosceles triangle.
ii.

21 cm

In the above figure, XLMT is a rectangle. $\mathrm{LM}=21 \mathrm{~cm}, \mathrm{XL}=10.5 \mathrm{~cm}$. The diameter of the smaller semicircle is half the diameter of the larger semicircle. Find the area of the non-shaded region.

Solution:

Given,
XLMT is a rectangle.
$\mathrm{LM}=21 \mathrm{~cm}$
$\mathrm{XL}=10.5 \mathrm{~cm}$
Let d be the diameter of smaller semicircle and D be the diameter of the larger semicircle.
According to the given,
$\mathrm{d}=\mathrm{D} / 2 \ldots$. i)
From the given figure,
$\mathrm{OP}=\mathrm{LM}=21 \mathrm{~cm}$
$\mathrm{OP}=\mathrm{D}+\mathrm{d}$
$21=\mathrm{D}+(\mathrm{D} / 2)$
$21=(2 \mathrm{D}+\mathrm{D}) / 2$
$3 \mathrm{D}=42$
$D=42 / 3$
$\mathrm{D}=14 \mathrm{~cm}$
$\mathrm{d}=\mathrm{D} / 2=14 / 2=7 \mathrm{~cm}$
Now,
Radius of the larger semicircle $=R=14 / 2=7 \mathrm{~cm}$

Radius of the smaller semicircle $=r=7 / 2 \mathrm{~cm}$
Area of the non-shaded region $=$ Area of rectangle - [Area of the smaller semicircle + Area of the larger semicircle]

$$
\begin{aligned}
& =\mathrm{LM} \times \mathrm{XL}-\left[\left(\pi \mathrm{r}^{2} / 2\right)+\left(\pi \mathrm{R}^{2} / 2\right)\right] \\
& =(21 \times 10.5)-\pi\left[\left\{(7 / 2)^{2} / 2\right\}+(7)^{2} / 2\right] \\
& =220.5-\pi[(49 / 8)+(49 / 2)] \\
& =220.5-49 \pi[(1 / 8)+(1 / 2)] \\
& =220.5-49 \pi[(1+4) / 8] \\
& =220.5-49 \times(22 / 7) \times(5 / 8) \\
& =220.5-(385 / 4) \\
& =220.5-96.25 \\
& =124.25
\end{aligned}
$$

Hence, the area of non-shaded region is $124.25 \mathrm{~cm}^{2}$.

