Q1. Calculate the molar mass of the following: (i) CH_4 (ii) H_2O (iii) CO_2 Ans. (i) CH_4 : Molecular weight of methane, CH_4 = (1 x Atomic weight of carbon) + (4 x Atomic weight of hydrogen) = [1(12.011 u) +4 (1.008u)] = 12.011u + 4.032 u = 16.043 u (ii) H_2O : Molecular weight of water, $H_2{\cal O}$ = (2 x Atomic weight of hydrogen) + (1 x Atomic weight of oxygen) = [2(1.0084) + 1(16.00 u)] = 2.016 u +16.00 u = 18.016u So approximately = 18.02 u (iii) CO_2 : = Molecular weight of carbon dioxide, CO_2 = (1 x Atomic weight of carbon) + (2 x Atomic weight of oxygen) = [1(12.011 u) + 2(16.00 u)]= 12.011 u +32.00 u = 44.011 u So approximately = 44.01u Q2. Calculate the mass per cent of different elements present in sodium sulphate (Na_2SO_4). Ans. Now for Na_2SO_4 . Molar mass of Na_2SO_4 = [(2 x 23.0) + (32.066) + 4(16.00)] =142.066 g

Therefore, Mass percent of the sodium element:			
$= \frac{46.0g}{142.066g} \times 100$			
= 32.379			
=32.4%			
Mass percent of the sulphur element:			
$= \frac{32.066g}{142.066g} \times 100$			
= 22.57			
=22.6%			
Mass percent of the oxygen element:			
$= \frac{64.0g}{142.066g} \times 100$			
=45.049			
=45.05%			
Q3. Determine the empirical formula of an oxide of iron, which has 69.9% iron and 30.1% dioxygen by mass.			
Ans.			
Percent of Fe by mass = 69.9 % [As given above]			
Percent of O ₂ by mass = 30.1 % [As given above]			
Relative moles of Fe in iron oxide:			
$= \frac{percent \ of \ iron \ by \ mass}{Atomic \ mass \ of \ iron}$			
•			
$= \frac{69.9}{55.85}$			
$= \frac{69.9}{55.85}$			
$= \frac{69.9}{55.85}$ $= 1.25$			
$= \frac{69.9}{55.85}$ $= 1.25$ Relative moles of O in iron oxide: $= percent \ of \ oxygen \ by \ mass$			
$= \frac{69.9}{55.85}$ $= 1.25$ Relative moles of 0 in iron oxide: $= \frac{percent\ of\ oxygen\ by\ mass}{Atomic\ mass\ of\ oxygen}$			
$= \frac{69.9}{55.85}$ $= 1.25$ Relative moles of 0 in iron oxide: $= \frac{percent\ of\ oxygen\ by\ mass}{Atomic\ mass\ of\ oxygen}$ $= \frac{30.1}{16.00}$			

Therefore, empirical formula of iron oxide is ${\it Fe}_2{\it O}_3$.

- Q4. Calculate the amount of carbon dioxide that could be produced when
- (i) 1 mole of carbon is burnt in air.
- (ii) 1 mole of carbon is burnt in 16 g of dioxygen.
- (iii) 2 moles of carbon are burnt in 16 g of dioxygen.

Ans.

pprox 2: 3

(i) 1 mole of carbon is burnt in air.

$$C + O_2 \rightarrow CO_2$$

1 mole of carbon reacts with 1 mole of O_2 to form one mole of CO_2 .
Amount of CO_2 produced = 44 g
(ii) 1 mole of carbon is burnt in 16 g of O ₂ .
1 mole of carbon burnt in 32 grams of ${\rm O}_2$ it forms 44 grams of CO_2 .
Therefore, 16 grams of O $_2$ will form $\frac{44\times16}{32}$
= 22 grams of CO_2
(iii) 2 males of earlier are burnt in 16 a of 0
(iii) 2 moles of carbon are burnt in 16 g of 0 ₂ . Since oxygen is the limiting reactant here, the 16g (0.5 mol) of 0 ₂ will react with 6g of carbon (0.5 mol) to form 22 g of carbon dioxide. The remaining 18g of carbon (1.5 mol) will not undergo combustion.
Q5. Calculate the mass of sodium acetate (CH_3COONa) required to make 500 mL of 0.375 molar aqueous solution.
Molar mass of sodium acetate is $82.0245 \text{ g mol}^{-1}$.
Ans.
0.375 Maqueous solution of CH_3COONa
= 1000 mL of solution containing 0.375 moles of CH_3COONa
Therefore, no. of moles of CH_3COONa in 500 mL
$= \frac{0.375}{1000} \times 1000$
= 0.1875 mole
Molar mass of sodium acetate = $82.0245\ g\ mol^{-1}$
Therefore, mass that is required of CH_3COONa
Therefore, mass that is required of CH_3COONa = $(82.0245\ g\ mol^{-1})(0.1875\ mole)$
= $(82.0245~g~mol^{-1})(0.1875~mole)$ = $15.38~gram$ Q6. Calculate the concentration of nitric acid in moles per litre in a sample which has a density, 1.41 g mL-1 and the mass per cent of nitric acid in it being 69%
= $(82.0245~g~mol^{-1})(0.1875~mole)$ = $15.38~gram$ Q6. Calculate the concentration of nitric acid in moles per litre in a sample which has a density, 1.41 g mL-1 and the mass per cent of nitric acid in it being 69% Ans.
= $(82.0245~g~mol^{-1})(0.1875~mole)$ = $15.38~gram$ Q6. Calculate the concentration of nitric acid in moles per litre in a sample which has a density, 1.41 g mL-1 and the mass per cent of nitric acid in it being 69% Ans. Mass percent of HNO ₃ in sample is 69 %
= $(82.0245~g~mol^{-1})(0.1875~mole)$ = $15.38~gram$ Q6. Calculate the concentration of nitric acid in moles per litre in a sample which has a density, 1.41 g mL-1 and the mass per cent of nitric acid in it being 69% Ans. Mass percent of HNO $_3$ in sample is 69 % Thus, 100 g of HNO $_3$ contains 69 g of HNO $_3$ by mass.
= $(82.0245~g~mol^{-1})(0.1875~mole)$ = $15.38~gram$ Q6. Calculate the concentration of nitric acid in moles per litre in a sample which has a density, 1.41 g mL-1 and the mass per cent of nitric acid in it being 69% Ans. Mass percent of HNO ₃ in sample is 69 % Thus, $100~g~of~HNO_3~contains~69~g~of~HNO_3~by~mass$. Molar mass of HNO ₃
= $(82.0245~g~mol^{-1})(0.1875~mole)$ = $15.38~gram$ Q6. Calculate the concentration of nitric acid in moles per litre in a sample which has a density, 1.41 g mL-1 and the mass per cent of nitric acid in it being 69% Ans. Mass percent of HNO $_3$ in sample is 69 % Thus, 100 g of HNO $_3$ contains 69 g of HNO $_3$ by mass.
= $(82.0245~g~mol^{-1})(0.1875~mole)$ = $15.38~gram$ Q6. Calculate the concentration of nitric acid in moles per litre in a sample which has a density, 1.41 g mL-1 and the mass per cent of nitric acid in it being 69% Ans. Mass percent of HNO $_3$ in sample is 69 % Thus, 100 g of HNO $_3$ contains 69 g of HNO $_3$ by mass. Molar mass of HNO $_3$ = $\{1+14+3(16)\}~g.mol^{-1}$

Now, No. of moles in 69 g of HNO_3 :
$= \frac{69 \ g}{63 \ g \ mol^{-1}}$
= 1.095 mol
Volume of 100g HNO ₃ solution
$= \frac{Mass\ of\ solution}{density\ of\ solution}$
$= \frac{100g}{1.41g \ mL^{-1}}$
= 70.92mL
= $70.92 imes 10^{-3} \ L$
Concentration of HNO ₃
$= \frac{1.095 \ mole}{70.92 \times 10^{-3} L}$
= 15.44mol/L
Therefore, Concentration of $HNO_3 = 15.44 \text{ mol/L}$
Q7. How much copper can be obtained from 100 g of copper sulphate (CuSO4)?
Ans.
1 mole of $CuSO_4$ contains 1 mole of Cu.
Molar mass of $CuSO_4$
= (63.5) + (32.00) + 4(16.00)
= 63.5 + 32.00 + 64.00
= 159.5 gram
159.5 gram of $CuSO_4$ contains 63.5 gram of Cu.
Therefore, 100 gram of $CuSO_4$ will contain $\frac{63.5 \times 100g}{159.5}$ of Cu.
$= \frac{63.5 \times 100}{159.5}$
=39.81 gram
Q8. Determine the molecular formula of an oxide of iron, in which the mass per cent of iron and oxygen are 69.9 and 30.7 respectively.
Ans.
Here,
Mass percent of Fe = 69.9%
Mass percent of 0 = 30.1%
No. of moles of Fe present in oxide
$= \frac{69.90}{55.85}$

= 1.25

No. of moles of O present in oxide

$$=\frac{30.1}{16.0}$$

=1.88

Ratio of Fe to O in oxide,

- = 1.25: 1.88
- $= \frac{1.25}{1.25} : \frac{1.88}{1.25}$
- =1:1.5
- = 2:3

Therefore, the empirical formula of oxide is ${\it Fe}_2{\it O}_3$

Empirical formula mass of ${\it Fe}_2{\it O}_3$

= 159.69 g

Therefore n =
$$\frac{Molar\ mass}{Empirical\ formula\ mass} = \frac{159.69\ g}{159.7\ g}$$

- = 0.999
- = 1(approx)

The molecular formula of a compound can be obtained by multiplying n and the empirical formula.

Thus, the empirical of the given oxide is ${\it Fe}_2{\it O}_3$ and n is 1.

Q9. Calculate the atomic mass (average) of chlorine using the following data:

Percentage Natural Abundance		Molar Mass
³⁵ Cl	75.77	34.9689
³⁷ Cl	24.23	36.9659

Ans.

Average atomic mass of Cl.

=[(Fractional abundance of ^{35}Cl)(molar mass of ^{35}Cl)+(fractional abundance of ^{37}Cl)(Molar mass of ^{37}Cl)]

=[{(
$$\frac{75.77}{100} \big(34.9689u \big)$$
 } + {($\frac{24.23}{100} \big(34.9659\ u \big)$ }]

= 26.4959 + 8.9568

= 35.4527 u

Therefore, the average atomic mass of Cl = 35.4527 u

Q10. In three moles of ethane (C2H6), calculate the following: (i) Number of moles of carbon atoms. (ii) Number of moles of hydrogen atom
(iii) Number of molecules of ethane
Ans.
(a) 1 mole $C_2 H_6$ contains two moles of C- atoms.
\therefore No. of moles of C- atoms in 3 moles of C_2H_6 .
= 2 * 3
= 6
(b) 1 mole $C_2 H_6$ contains six moles of H- atoms.
\therefore No. of moles of C- atoms in 3 moles of C_2H_6 .
= 3 * 6
= 18
(c) 1 mole $C_2 H_6$ contains six moles of H- atoms.
\therefore No. of molecules in 3 moles of C_2H_6 .
= 3 * 6.023 * 10 ²³
= 18.069 * 10 ²³
Q11. What is the concentration of sugar (C12H22O11) in mol $L-1$ if its 20 g are dissolved in enough water to make a final volume up to $2L$?
Ans.
Molarity (M) is as given by,
$= \frac{Number\ of\ moles\ of\ solute}{Volume\ of\ solution\ in\ Litres}$
$= \frac{Mass\ of\ sugar}{Molar\ mass\ of\ sugar} \\ 2\ L$
$= \frac{20 \ g}{[(12 \times 12) + (1 \times 22) + (11 \times 16)]g]}$ $= \frac{2 \ U}{2 \ L}$
$= \frac{\frac{20\ g}{342\ g}}{2\ L}$
$= \frac{0.0585 \ mol}{2 \ L}$
= 0.02925 mol L^{-1}

Molar mass of CH_3OH

= 32 g
$$mol^{-1}$$

= 0.032 kg
$$\,mol^{-1}$$

Molarity of the solution

$$= \ \frac{0.793 \ kg \ L^{-1}}{0.032 \ kg \ mol^{-1}}$$

= 24.78
$$\,{
m mol}\,L^{-1}$$

(From the definition of density)

$$M_1 V_1 = \, M_2 V_2 \, \ldots$$
 (24.78 mol L^{-1}) $\, V_1 \,$ = (2.5 L) (0.25 mol L^{-1})

$$V_1$$
 = 0.0252 Litre

$$V_1$$
 = 25.22 Millilitre

Q13. Pressure is determined as force per unit area of the surface. The SI unit of pressure, pascal is as shown below: 1Pa = 1N m-2

If mass of air at sea level is 1034 g cm-2, calculate the pressure in pascal

Ans.

As per definition, pressure is force per unit area of the surface.

$$\mathsf{P} = \frac{F}{A}$$

$$=\; \frac{1034\; g \times 9.8\; ms^{-2}}{cm^2} \; \times \; \frac{1\; kg}{1000\; g} \; \times \; \frac{(100)^2\; cm^2}{1m^2}$$

= 1.01332 ×
$$10^5 \ \mathrm{kg} \ m^{-1} s^{-2}$$

Now,

1 N = 1 kg m
$$s^{-2}$$

Then,

1 Pa = 1
$$Nm^{-2}$$

= 1
$$kgm^{-2} \ s^{-2}$$

Pa = 1
$$kgm^{-1}$$
 s^{-2} ... Pressure (P) = 1.01332 × 10^5 Pa

Ans.

Si Unit: Kilogram (kg)

Mass:

"The mass equal to the mass of the international prototype of kilogram is known as mass."

Q15. Match the following prefixes with their multiples:

	Prefixes	Multiples
(a)	femto	10
(b)	giga	10^{-15}
(c)	mega	10^{-6}
(d)	deca	10^{9}
(e)	micro	10^6

Ans.

	Prefixes	Multiples
(a)	femto	10^{-15}
(b)	giga	10^{9}
(c)	mega	10^{6}
(d)	deca	10
(e)	micro	10^{-6}

Q16. What do you mean by significant figures?

Ans.

Significant figures are the meaningful digits which are known with certainty. Significant figures indicate uncertainty in experimented value.

e.g.: The result of the experiment is 15.6 mL in that case 15 is certain and 6 is uncertain. The total significant figures are 3.

Therefore, "the total number of digits in a number with the Last digit the shows the uncertainty of the result is known as significant figures."

- Q17. A sample of drinking water was found to be severely contaminated with chloroform, CHCl3, supposed to be carcinogenic in nature. The level of contamination was 15 ppm (by mass).
- (i) Express this in per cent by mass.
- (ii) Determine the molality of chloroform in the water sample.

Ans.

(a) 1 ppm = 1 part out of 1 million parts.

Mass percent of 15 ppm chloroform in H_2O

$$=\frac{15}{10^6} \times 100$$

=
$$\approx$$
 1.5 \times 10^{-3} %

1000 gram of the sample is having 1.5 $imes 10^{-2}$ g of $\,CHCl_3$.

 \therefore Molality of $CHCl_3$ in water

=
$$\frac{1.5 \times 10^{-2} \ g}{Molar \ mass \ of \ CHCl_3}$$

Molar mass ($CHCl_3$)

$$= 12 + 1 + 3 (35.5)$$

= 119.5 gram
$$\,mol^{-1}$$

Therefore, molality of $CHCl_3\,$ I water

=
$$1.25 \times 10^{-4} \text{ m}$$

Q18. Express the following in the scientific notation:

- (i) 0.0048
- (ii) 234,000
- (iii) 8008
- (iv) 500.0
- (v) 6.0012

Ans.

(a)
$$0.0048 = 4.8 \times 10^{-3}$$

(b) 234,000 =
$$2.34 \times 10^5$$

(c)
$$8008 = 8.008 \times 10^3$$

(d)
$$500.0 = 5.000 \times 10^2$$

Q19. How many significant figures are present in the following?

- (a) 0.0027
- (b) 209
- (c)6005
- (d)136,000
- (e) 900.0
- (f)2.0035

Ans

- (i) 0.0027: 2 significant numbers.
- (ii) 209: 3 significant numbers.
- (iii)6005: 4 significant numbers.
- (iv)136,000:3 significant numbers.
- (v) 900.0: 4 significant numbers.
- (vi)2.0035: 5 significant numbers.

Q20. Round up the following upto three significant figures:

- (a) 35.217
- (b) 11.4108
- (c)0.05577
- (d)2806

Ans.

(a) The number after round up is: 35.2

(b) The number after round up is: 11.4

(c)The number after round up is: 0.0560

(d)The number after round up is: 2810

Q21. The following data are obtained when dinitrogen and dioxygen react together to form different compounds:

	Mass of dioxygen	Mass of dinitrogen
(i)	16 g	14 g
(ii)	32 g	14 g
(iii)	32 g	28 g
(iv)	80 g	28 g

- (a) Which law of chemical combination is obeyed by the above experimental data? Give its statement.
- (b) Fill in the blanks in the following conversions:
- (i) 1 km = mm = pm
- (ii) 1 mg = kg = ng
- (iii) 1 mL = L = dm3

Ans.

(1) If we fix the mass of N_2 at 28 g, the masses of N_2 that will combine with the fixed mass of N_2 are 32 gram, 64 gram, 32 gram and 80 gram.

The mass of O_2 bear whole no. ratio of 1: 2: 2: 5. Therefore, the given information obeys the law of multiple proportions.

The law of multiple proportions states, "If 2 elements combine to form more than 1 compound, then the masses of one element that combines with the fixed mass of another element are in the ratio of small whole numbers."

- (2) Convert:
- (a) 1 km = ____ mm = ___ pm
 - 1 km = 1 km * $\frac{1000 \text{ m}}{1 \text{ km}}$ × $\frac{100 \text{ cm}}{1 \text{ m}}$ * $\frac{10 \text{ mm}}{1 \text{ cm}}$
- \therefore 1 km = 10^6 mm

• 1 km = 1 km *
$$\frac{1000 \ m}{1 \ km}$$
 * $\frac{1 \ pm}{10^{-12} \ m}$

 \therefore 1 km = 10^{15} pm

Therefore, 1 km = $10^6\,$ mm = $10^{15}\,$ pm

- (b) 1 mg = ___ kg = ___ ng
- 1 mg = 1 mg * $\frac{1 \ g}{1000 \ mg}$ * $\frac{1 \ kg}{1000 \ g}$

1 mg = 10^{-6} kg

• 1 mg = 1 mg *
$$\frac{1 g}{1000 mg}$$
 * $\frac{1 ng}{10^{-9} g}$

1 mg =
$$10^6$$
 ng

Therefore, 1 mg = 10^{-6} kg = 10^6 ng

(c) 1 mL =
$$_$$
 L = $_$ dm^3

• 1 mL = 1 mL *
$$\frac{1 L}{1000 mL}$$

 $1 \, \text{mL} = 10^{-3} \, \text{L}$

• 1 mL = 1
$$cm^3$$
 = 1 * $\frac{1~dm \times 1~dm \times 1~dm}{10~cm \times 10~cm \times 10~cm}cm^3$

1 mL =
$$10^{-3}dm^3$$

Therefore, 1 mL = $10^{-3}\,\mathrm{L}$ = $10^{-3}\,\,dm^3$

Q22. If the speed of light is 3.0×10^8 m s⁻¹, calculate the distance covered by light in 2.00 ns

Ans.

Time taken = 2 ns

$$= 2 \times 10^{-9} \text{ s}$$

Now,

Speed of light = 3 \times 10^8 ms^{-1}

So,

Distance travelled in 2 ns = speed of light * time taken

$$= (3 \times 10^8)(2 \times 10^{-9})$$

=
$$6 \times 10^{-1} \text{ m}$$

= 0.6 m

Q23. In a reaction

 $A + B2 \rightarrow AB2$

Identify the limiting reagent, if any, in the following reaction mixtures.

- (a) $2 \mod X + 3 \mod Y$
- (b) 100 atoms of X + 100 molecules of Y
- (c) 300 atoms of X + 200 molecules of Y
- (d) 2.5 mol X + 5 mol Y
- (e) 5 mol X + 2.5 mol Y

Ans.

Limiting reagent:

It determines the extent of a reaction. It is the first to get consumed during a reaction, thus causes the reaction to stop and limiting the amt. of products formed.

(a) 2 mol X + 3 mol Y

1 mole of X reacts with 1 mole of Y. Similarly, 2 moles of X reacts with 2 moles of Y, so 1 mole of Y is unused. Hence, X is limiting agent.

(b) 100 atoms of X + 100 molecules of Y

1 atom of X reacts with 1 molecule of Y. Similarly, 100 atoms of X reacts with 100 molecules of Y. Hence, it is a stoichiometric mixture where there is no limiting agent.

(c) 300 atoms of X + 200 molecules of Y

1 atom of X reacts with 1 molecule of Y. Similarly, 200 atoms of X reacts with 200 molecules of Y, so 100 atoms of X are unused. Hence, Y is limiting agent.

(d) 2.5 mol X + 5 mol Y

1 mole of X reacts with 1 mole of Y. Similarly, 2.5 moles of X reacts with 2.5 moles of Y, so 2.5 mole of Y is unused. Hence, X is limiting agent.

(e) 5 mol X + 2.5 mol Y

1 mole of X reacts with 1 mole of Y. Similarly 2.5 moles of X reacts with 2 moles of Y, so 2.5 mole of X is unused. Hence, Y is limiting agent.

 Q_24 . Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation: $N_2(g) + H_2(g) + 2NH3(g)$

- (a) What is the mass of NH_3 produced if 2×10^3 g N $_2$ reacts with 1×10^3 g of H $_2$?
- (b) Will the reactants N₂ or H₂ remain unreacted?
- (c) If any, then which one and give it's mass.

Ans

(a) Balance the given equation:

$$N_2\left(g
ight) \ + \ 3H_2\left(g
ight) \
ightarrow \ 2NH_3\left(g
ight)$$

Thus, 1 mole (28 g) of ${
m N}_2$ reacts with 3 mole (6 g) of ${
m H}_2$ to give 2 mole (34 g) of NH_3 .

$$2~ imes~10^3$$
 g of N $_2$ will react with $rac{6}{28}~ imes~2~ imes~10^3$ g NH3

 $2~\times~10^3$ g of N₂ will react with 428.6 g of H₂.

Given:

Amt of
$$H_2 = 1 \times 10^3$$

28 g of $\,N_2\,$ produces 34 g of $\,NH_3\,$

Therefore, mass of $\,NH_3\,$ produced by 2000 g of $\,N_2\,$

=
$$\frac{34 \text{ g}}{28 \text{ g}} \times 2000 \text{ g}$$

- = 2430 g of NH_{3}
- (b) ${\cal H}_2$ is the excess reagent. Therefore, ${\cal H}_2$ will not react.
- (c) Mass of H2 unreacted

=
$$1 \times 10^3$$
 – 428.6 g

= 5**7**1.4 g

Q25. How are 0.50 mol Na2CO3 and 0.50 M Na2CO3 different?

Ans

Molar mass of Na_2CO_3 :

$$= (2 \times 23) + 12 + (3 \times 16)$$

= 106 g
$$mol^{-1}$$

1 mole of Na_2CO_3 means 106 g of Na_2CO_3

Therefore, 0.5 mol of Na_2CO_3

=
$$\frac{106 \ g}{1 \ mol} \times 0.5 \ mol \ Na_2CO_3$$

= 53 g of
$$Na_2CO_3$$

0.5 M of
$$Na_2CO_3$$
 = 0.5 mol/L Na_2CO_3

Hence, 0.5 mol of Na_2CO_3 is in 1 L of water or 53 g of Na_2CO_3 is in 1 L of water.

Q26. If 10 volumes of dihydrogen gas reacts with five volumes of dioxygen gas, how many volumes of water vapour would be produced?

Ans.

Reaction:

$$2H_2\left(g
ight) \;+\; O_2\left(g
ight) \;
ightarrow \; 2H_2O\left(g
ight)$$

2 volumes of dihydrogen react with 1 volume of dioxygen to produce two volumes of vapour.

Hence, 10 volumes of dihydrogen will react with five volumes of dioxygen to produce 10 volumes of vapour.

Q27. Convert the following into basic units:

- (i) 29.7 pm
- (ii) 16.15 pm
- (iii) 25366 mg

Ans.

(i) 29.7 pm

1 pm =
$$10^{-12}\ m$$

29.7 pm = 29.7 ×
$$10^{-12} \ m$$

=
$$2.97 \times 10^{-11} \ m$$

(ii) 16.15 pm

1 pm =
$$10^{-12}\ m$$

16.15 pm = 16.15
$$\times$$
 $10^{-12}~m$

=
$$1.615 \times 10^{-11} \ m$$

(iii) 25366 mg

1 mg =
$$10^{-3} g$$

25366 mg = 2.5366 ×
$$10^{-1}$$
 × $10^{-3}~kg$

25366 mg = 2.5366 ×
$$10^{-2}\ kg$$

Q28. Which one of the following will have the largest number of atoms?

(iv) 1 g of
$$Cl_2$$
 (g)

Ans.

=
$$\frac{1}{197}$$
 mol of Au (s)

=
$$\frac{6.022 \times 10^{23}}{197}$$
 atoms of Au (s)

= 3.06
$$imes 10^{21}$$
 atoms of Au (s)

=
$$\frac{1}{23}$$
 mol of Na (s)

=
$$\frac{6.022\times10^{23}}{23}$$
 atoms of Na (s)

= 0.262
$$\, imes\,10^{23}\,$$
 atoms of Na (s)

= 26.2
$$imes$$
 10^{21} atoms of Na (s)

=
$$\frac{1}{7}$$
 mol of Li (s)

=
$$\frac{6.022 \times 10^{23}}{7}$$
 atoms of Li (s)

= 0.86
$$imes$$
 10^{23} atoms of Li (s)

= 86.0
$$\, imes\,10^{21}\,$$
 atoms of Li (s)

(iv)1 g of
$${\it Cl}_2$$
 (g)

=
$$\frac{1}{71}$$
 mol of Cl_2 (g)

(Molar mass of Cl_2 molecule = 35.5 × 2 = 71 g mol^{-1})

=
$$\frac{6.022 \times 10^{23}}{71}$$
 atoms of Cl_2 (g)

= 0.0848
$$imes$$
 10^{23} atoms of Cl_2 (g)

Therefore, 1 g of Li (s) will have the largest no. of atoms.

Q29. Calculate the molarity of a solution of ethanol in water, in which the mole fraction of ethanol is 0.040 (assume the density of water to be one).

Ans.

Mole fraction of $\,C_2H_5OH\,$

$$= \frac{Number\ of\ moles\ of\ C_2H_5OH}{Number\ of\ moles\ of\ solution}$$

$$0.040 = \frac{n_{C_2H_5OH}}{n_{C_2H_5OH} + n_{H_2O}} --(1)$$

No. of moles present in 1 L water:

$$n_{H_2O} \ = \ {1000 \ g \over 18 \ g \ mol^{-1}} \ n_{H_2O}$$
 = 55.55 mol

Substituting the value of $\,n_{H_2O}\,$ in eq (1),

$$\frac{n_{C_2H_5OH}}{n_{C_2H_5OH} + 55.55} = 0.040$$

$$n_{C_2H_5OH}$$
 = 0.040 $n_{C_2H_5OH}$ + (0.040)(55.55)

$$0.96\,n_{C_2H_5OH}$$
 = 2.222 mol

$$n_{C_2H_5OH}$$
 = $\frac{2.222}{0.96}$ mol $n_{C_2H_5OH}$ = 2.314 mol

Therefore, molarity of solution

=
$$\frac{2.314 \ mol}{1 \ L}$$

= 2.314 M

Q30. What will be the mass of one 12C atom in g?

Ans

1 mole of carbon atoms

=
$$6.023~ imes~10^{23}$$
 atoms of carbon

= 12 g of carbon

Therefore, mass of 1 $\,^{12}$ $\,\mathrm{C}$ atom

$$= \frac{12 \ g}{6.022 \times 10^{23}}$$

=
$$1.993 \times 10^{-23}g$$

Q31. How many significant figures should be present in the answer of the following calculations?

(i)
$$\frac{0.02856 \times 298.15 \times 0.112}{0.5785}$$

(ii) 5 × 5.365

(iii) 0.012 + 0.7864 + 0.0215

Ans.

(i)
$$\frac{0.02856 \times 298.15 \times 0.112}{0.5785}$$

Least precise no. of calculation = 0.112

Therefore, no. of significant numbers in the answer

= No. of significant numbers in the least precise no.

= 3

(ii)
$$5 \times 5.365$$

Least precise no. of calculation = 5.365

Therefore, no. of significant numbers in the answer

= No. of significant numbers in 5.365

= 4

As the least no. of decimal place in each term is 4, the no. of significant numbers in the answer is also 4.

Q32. Use the data given in the following table to calculate the molar mass of naturally occuring argon isotopes:

Isotope	Molar mass	Abundance
36 AT	35.96755 g mol ⁻¹	0.337 %
₃₅ Ar	37.96272 $g mol^{-1}$	0.063%
40 Ar	39.9624 g mol ⁻¹	99.600%

Ans.

Molar mass of Argon:

= [
$$\left(35.96755 \times \frac{0.337}{100}\right)$$
 + $\left(37.96272 \times \frac{0.063}{100}\right)$ + $\left(39.9624 \times \frac{99.600}{100}\right)$]

= [0.121 + 0.024 + 39.802]
$$\boldsymbol{g} \ mol^{-1}$$

= 39.947
$$g \ mol^{-1}$$

Q33. Calculate the number of atoms in each of the following

- (i) 52 moles of Ar
- (ii) 52 u of He
- (iii) 52 g of He

Ans.

(i) 52 moles of Ar

1 mole of Ar = $6.023~\times~10^{23}~$ atoms of Ar

Therefore, 52 mol of Ar = 52 × 6.023 imes 10^{23} atoms of Ar

=
$$3.131~ imes~10^{25}$$
 atoms of Ar

1 atom of He = 4 u of He

OR

4 u of He = 1 atom of He

1 u of He = $\frac{1}{4}$ atom of He

52 u of He = $\frac{52}{4}$ atom of He

= 13 atoms of He

(iii) 52 g of He

4 g of He = $6.023~\times~10^{23}~$ atoms of He

52 g of He = $\frac{6.023 \times 10^{23} \times 52}{4}$ atoms of He

= 7.8286×10^{24} atoms of He

Q34. A welding fuel gas contains carbon and hydrogen only. Burning a small sample of itin oxygen gives 3.38 g carbon dioxide, 0.690 g of water and no other products. Avolume of 10.0 L (measured at STP) of this welding gas is found to weigh 11.6 g. Find:

- (i) Empirical formula
- (ii) Molar mass of the gas, and
- (iii) Molecular formula

Ans.

(i) Empirical formula

1 mole of ${\it CO}_2$ contains 12 g of carbon

Therefore, 3.38 g of ${\it CO}_2$ will contain carbon

=
$$\frac{12 \ g}{44 \ g} \times 3.38 \ g$$

= 0.9217 g

18 g of water contains 2 g of hydrogen

Therefore, 0.690 g of water will contain hydrogen

$$= \frac{2 g}{18 g} \times 0.690$$

= 0.0767 g

As hydrogen and carbon are the only elements of the compound. Now, the total mass is:

= 0.9217 g + 0.0767 g

= 0.9984 g

% of H in the compound

$$= \frac{0.0767 \ g}{0.9984 \ g} \times 100$$

= 7.68 %

Moles of C in the compound,

- $=\frac{92.32}{12.00}$
- = 7.69

Moles of H in the compound,

- $=\frac{7.68}{1}$
- = 7.68

Therefore, the ratio of carbon to hydrogen is,

7.69: 7.68

1:1

Therefore, the empirical formula is CH.

(ii) Molar mass of the gas, and

Weight of 10 L of gas at STP = 11.6 g

Therefore, weight of 22.4 L of gas at STP

=
$$\frac{11.6~g}{10~L}~ imes~22.4~L$$

- = 25.984 g
- pprox 26 g

(iii) Molecular formula

Empirical formula mass:

$$CH = 12 + 1$$

$$n = \frac{Molar \; mass \; of \; gas}{Empirical \; formula \; mass \; of \; gas}$$

$$= \frac{26 \ g}{13 \ g}$$

= 2

Therefore, molecular formula is $(CH)_n$ that is C_2H_2 .

Q35. Calcium carbonate reacts with aqueous HCl to give CaCl2 and CO2 according to the reaction, CaCO3 (s) + 2 HCl (aq) \rightarrow CaCl2(aq) + CO2 (g) + H2O(l)

What mass of CaCO3 is required to react completely with 25 mL of 0.75 M HCl?

Ans.

≡ 0.75 mol of HCl are present in 1 L of water

 \equiv [(0.75 mol) × (36.5 g mol-1)] HCl is present in 1 L of water

 \equiv 27.375 g of HCl is present in 1 L of water

Thus, 1000 mL of solution contins 27.375 g of HCl

Therefore, amt of HCl present in 25 mL of solution

=
$$\frac{27.375~g}{1000~mL}~ imes~25~mL$$

= 0.6844 g

Given chemical reaction,

$$CaCO_3(s) + 2 HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$

2 mol of HCl (2 × 36.5 = 73 g) react with 1 mol of $CaCO_3$ (100 g)

Therefore, amt of $\,CaCO_3\,$ that will react with 0.6844 g

$$=\frac{100}{73} \times 0.6844 g$$

= 0.9375 g

Q36. Chlorine is prepared in the laboratory by treating manganese dioxide (MnO2) with aqueous hydrochloric acid according to the reaction:

4 HCl (aq) + MnO2(s) \rightarrow 2H2O (l) + MnCl2(aq) + Cl2 (g)

How many grams of HCl react with 5.0 g of manganese dioxide?

Ans.

1 mol of
$$MnO_2$$
 = 55 + 2 × 16 = 87 g

4 mol of HCl = $4 \times 36.5 = 146 \text{ g}$

1 mol of MnO_2 reacts with 4 mol of HCl

5 g of MnO_2 will react with:

=
$$\frac{146~g}{87~g}~ imes~5~g$$
 HCl

= 8.4 g HCl

Therefore, 8.4 g of HCl will react with 5 g of $\,MnO_2$.