

Exercise 1.5

Page: 24

1. Classify the following numbers as rational or irrational: (i)2 $-\sqrt{5}$ Solution: We know that, $\sqrt{5} = 2.2360679...$ Here, 2.2360679... is non-terminating and non-recurring. Now, substituting the value of $\sqrt{5}$ in 2 $-\sqrt{5}$, we get, $2-\sqrt{5} = 2-2.2360679... = -0.2360679$ Since the number, -0.2360679..., is non-terminating non-recurring, 2 $-\sqrt{5}$ is an irrational number.

(ii)(3 + $\sqrt{23}$) - $\sqrt{23}$ Solution: (3 + $\sqrt{23}$) - $\sqrt{23}$ = 3+ $\sqrt{23}$ - $\sqrt{23}$ = 3 = 3/1

Since the number 3/1 is in p/q form, $(3 + \sqrt{23}) - \sqrt{23}$ is rational.

(iii) $2\sqrt{7}/7\sqrt{7}$ Solution: $2\sqrt{7}/7\sqrt{7} = (2/7) \times (\sqrt{7}/\sqrt{7})$ We know that $(\sqrt{7}/\sqrt{7}) = 1$

Hence, $(2/7) \times (\sqrt{7}/\sqrt{7}) = (2/7) \times 1 = 2/7$

Since the number, 2/7 is in p/q form, $2\sqrt{7}/7\sqrt{7}$ is rational.

(iv)1/ $\sqrt{2}$ Solution: Multiplying and dividing numerator and denominator by $\sqrt{2}$ we get, $(1/\sqrt{2}) \times (\sqrt{2}/\sqrt{2}) = \sqrt{2}/2$ (since $\sqrt{2} \times \sqrt{2} = 2$)

We know that, $\sqrt{2} = 1.4142...$ Then, $\sqrt{2/2} = 1.4142/2 = 0.7071..$ Since the number, 0.7071..is non-terminating non-recurring, $1/\sqrt{2}$ is an irrational number.

(v)2π

Solution: We know that, the value of $\pi = 3.1415$ Hence, $2\pi = 2 \times 3.1415$... = 6.2830... Since the number, 6.2830..., is non-terminating non-recurring, 2π is an irrational number.

2. Simplify each of the following expressions:

(i) $(3+\sqrt{3})(2+\sqrt{2})$ Solution:

https://byjus.com

 $(3+\sqrt{3})(2+\sqrt{2})$ Opening the brackets, we get, $(3\times2)+(3\times\sqrt{2})+(\sqrt{3}\times2)+(\sqrt{3}\times\sqrt{2})$ = $6+3\sqrt{2}+2\sqrt{3}+\sqrt{6}$

(ii) $(3+\sqrt{3})(2+\sqrt{2})$ Solution:

$$(3+\sqrt{3})(2+\sqrt{2}) = 3^2 - (\sqrt{3})^2 = 9 - 3$$

= 6

(iii) $(\sqrt{5}+\sqrt{2})^2$ Solution: $(\sqrt{5}+\sqrt{2})^2 = \sqrt{5^2}+(2\times\sqrt{5}\times\sqrt{2})+\sqrt{2^2}$ $= 5+2\times\sqrt{10+2} = 7+2\sqrt{10}$

(iv) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$ Solution: $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2}) = (\sqrt{5^2}-\sqrt{2^2}) = 5-2 = 3$

3. Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter, (say d). That is, $\pi = c/d$. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?

Solution:

There is no contradiction. When we measure a value with a scale, we only obtain an approximate value. We never obtain an exact value. Therefore, we may not realize whether c or d is irrational. The value of π is almost equal to 22/7 or 3.142857...

4. Represent ($\sqrt{9.3}$) on the number line.

Solution:

Step 1: Draw a 9.3 units long line segment, AB. Extend AB to C such that BC=1 unit. Step 2: Now, AC = 10.3 units. Let the centre of AC be O. Step 3: Draw a semi-circle of radius OC with centre O. Step 4: Draw a BD perpendicular to AC at point B intersecting the semicircle at D. Join OD. Step 5: OBD, obtained, is a right angled triangle. Here, OD 10.3/2 (radius of semi-circle), OC = 10.3/2, BC = 1OB = OC - BC $\Rightarrow (10.3/2) - 1 = 8.3/2$ Using Pythagoras theorem, We get, $OD^2 = BD^2 + OB^2$ $\Rightarrow (10.3/2)^2 = BD^2 + (8.3/2)^2$ \Rightarrow BD² = (10.3/2)²-(8.3/2)² \Rightarrow (BD)² = (10.3/2)-(8.3/2)(10.3/2)+(8.3/2) \Rightarrow BD² = 9.3 \Rightarrow BD = $\sqrt{9.3}$

Thus, the length of BD is $\sqrt{9.3}$ units.

Step 6: Taking BD as radius and B as centre draw an arc which touches the line segment. The point where it touches the line segment is at a distance of $\sqrt{9.3}$ from O as shown in the figure.

https://byjus.com

5. Rationalize the denominators of the following:

(i) $1/\sqrt{7}$ Solution: Multiply and divide $1/\sqrt{7}$ by $\sqrt{7}$ $(1 \times \sqrt{7})/(\sqrt{7} \times \sqrt{7}) = \sqrt{7}/7$

(ii) 1/(√7-√6)

Solution:

Multiply and divide $1/(\sqrt{7}-\sqrt{6})$ by $(\sqrt{7}+\sqrt{6})$ $[1/(\sqrt{7}-\sqrt{6})] \times (\sqrt{7}+\sqrt{6})/(\sqrt{7}+\sqrt{6}) = (\sqrt{7}+\sqrt{6})/(\sqrt{7}-\sqrt{6})(\sqrt{7}+\sqrt{6})$ $= (\sqrt{7}+\sqrt{6})/\sqrt{7^2}-\sqrt{6^2}$ [denominator is obtained by the property, $(a+b)(a-b) = a^2-b^2$] $= (\sqrt{7}+\sqrt{6})/(7-6)$ $= (\sqrt{7}+\sqrt{6})/1$ $= \sqrt{7}+\sqrt{6}$

(iii) 1/(√5+√2)

Solution:

Multiply and divide $1/(\sqrt{5}+\sqrt{2})$ by $(\sqrt{5}-\sqrt{2})$ $[1/(\sqrt{5}+\sqrt{2})] \times (\sqrt{5}-\sqrt{2})/(\sqrt{5}-\sqrt{2}) = (\sqrt{5}-\sqrt{2})/(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})$ $= (\sqrt{5}-\sqrt{2})/(\sqrt{5^2}-\sqrt{2^2})$ [denominator is obtained by the property, $(a+b)(a-b) = a^2-b^2$] $= (\sqrt{5}-\sqrt{2})/(5-2)$ $= (\sqrt{5}-\sqrt{2})/3$

(iv) $1/(\sqrt{7-2})$ Solution: Multiply and divide $1/(\sqrt{7-2})$ by $(\sqrt{7+2})$ $1/(\sqrt{7-2}) \times (\sqrt{7+2})/(\sqrt{7+2}) = (\sqrt{7+2})/(\sqrt{7-2})(\sqrt{7+2})$ $= (\sqrt{7+2})/(\sqrt{7^2-2^2})$ [denominator is obtained by the property, $(a+b)(a-b) = a^2-b^2$] $= (\sqrt{7+2})/(7-4)$ $= (\sqrt{7+2})/3$

https://byjus.com