Exercise 1.1 Page: 5

1. Is zero a rational number? Can you write it in the form p/q where p and q are integers and $q \neq 0$? Solution:

We know that, a number is said to be rational if it can be written in the form p/q, where p and q are integers and $q \neq 0$.

Taking the case of '0',

Zero can be written in the form 0/1, 0/2, 0/3 ... as well as , 0/1, 0/2, 0/3 ...

Since it satisfies the necessary condition, we can conclude that 0 can be written in the p/q form, where q can either be positive or negative number.

Hence, 0 is a rational number.

2. Find six rational numbers between 3 and 4.

Solution:

There are infinite rational numbers between 3 and 4.

As we have to find 6 rational numbers between 3 and 4, we will multiply both the numbers, 3 and 4, with 6+1 = 7 (or any number greater than 6)

i.e.,
$$3\times(7/7) = 21/7$$

and, $4\times(7/7)=27/7$. .: The numbers in between 21/7 and 28/7 will be rational and will fall between 3 and 4. Hence, 22/7, 23/7, 24/7, 25/7, 26/7, 27/7 are the 6 rational numbers between 3 and 4.

3 Find five rational numbers between 3/5 and 4/5.

Solution:

There are infinite rational numbers between 3/5 and 4/5.

To find out 5 rational numbers between 3/5 and 4/5, we will multiply both the numbers 3/5 and 4/5 with 5+1=6 (or any number greater than 5)

i.e.,
$$(3/5)\times(6/6) = 18/30$$

and, $(4/5)\times(6/6) = 24/30$

∴ The numbers in between 18/30 and 24/30 will be rational and will fall between 3/5 and 4/5.

Hence, 19/30, 20/30, 21/30, 22/30, 23/30 are the 5 rational numbers between 3/5 and 4/5.

4. State whether the following statements are true or false. Give reasons for your answers.

(i) Every natural number is a whole number.

Solution:

True

Natural numbers- Numbers starting from 1 to infinity (without fractions or decimals)

i.e., Natural numbers= 1,2,3,4...

Whole numbers- Numbers starting from 0 to infinity (without fractions or decimals)

i.e., Whole numbers = 0,1,2,3...

Or, we can say that whole numbers have all the elements of natural numbers and zero.

∴ Every natural number is a whole number, however, every whole number is not a natural number.

(ii) Every integer is a whole number.

Solution:

False

Integers- Integers are set of numbers that contain positive, negative and 0; excluding fractional and decimal numbers.

i.e., integers= $\{...-4,-3,-2,-1,0,1,2,3,4...\}$

Whole numbers- Numbers starting from 0 to infinity (without fractions or decimals)

i.e., Whole numbers = 0,1,2,3...

Hence, we can say that integers include whole numbers as well as negative numbers.

∴ Every whole number is an integer, however, every integer is not a whole number.

(iii) Every rational number is a whole number.

Solution:

False

Rational numbers- All numbers in the form p/q, where p and q are integers and $q\neq 0$.

i.e., Rational numbers = 0, 19/30, 2, 9/-3, -12/7...

Whole numbers- Numbers starting from 0 to infinity (without fractions or decimals)

i.e., Whole numbers = 0,1,2,3...

Hence, we can say that integers include whole numbers as well as negative numbers.

: Every whole numbers are rational, however, every rational numbers are not whole numbers.

Exercise 1.2 Page: 8

1.State whether the following statements are true or false. Justify your answers.

(i) Every irrational number is a real number.

Solution:

True

Irrational Numbers - A number is said to be irrational, if it **cannot** be written in the p/q, where p and q are integers and $q \neq 0$.

i.e., Irrational numbers = 0, 19/30, 2, 9/-3, -12/7, $\sqrt{2}$, $\sqrt{5}$, π , 0.102....

Real numbers - The collection of both rational and irrational numbers are known as real numbers. i.e., Real numbers = $\sqrt{2}$, $\sqrt{5}$, π , 0.102...

: Every irrational number is a real number, however, every real numbers are not irrational numbers.

(ii) Every point on the number line is of the form \sqrt{m} where m is a natural number.

Solution:

False

The statement is false since as per the rule, a negative number cannot be expressed as square roots.

E.g., $\sqrt{9} = 3$ is a natural number.

But $\sqrt{2} = 1.414$ is not a natural number.

Similarly, we know that there are negative numbers on the number line but when we take the root of a negative number it becomes a complex number and not a natural number.

E.g., $\sqrt{-7} = 7i$, where $i = \sqrt{-1}$

 \therefore The statement that every point on the number line is of the form \sqrt{m} , where m is a natural number is false.

(iii) Every real number is an irrational number.

Solution:

False

The statement is false, the real numbers include both irrational and rational numbers. Therefore, every real number cannot be an irrational number.

Real numbers - The collection of both rational and irrational numbers are known as real numbers.

i.e., Real numbers = $\sqrt{2}$, $\sqrt{5}$, π , 0.102...

Irrational Numbers - A number is said to be irrational, if it **cannot** be written in the p/q, where p and q are integers and $q \neq 0$.

i.e., Irrational numbers = 0, 19/30, 2, 9/-3, -12/7, $\sqrt{2}$, $\sqrt{5}$, π , 0.102....

: Every irrational number is a real number, however, every real number is not irrational.

2. Are the square roots of all positive integers irrational? If not, give an example of the square root of a number that is a rational number.

Solution:

No, the square roots of all positive integers are not irrational.

For example,

 $\sqrt{4} = 2$ is rational.

 $\sqrt{9} = 3$ is rational.

Hence, the square roots of positive integers 4 and 9 are not irrational. (2 and 3, respectively).

3. Show how $\sqrt{5}$ can be represented on the number line.

Solution:

Step 1: Let line AB be of 2 unit on a number line.

Step 2: At B, draw a perpendicular line BC of length 1 unit.

Step 3: Join CA

Step 4: Now, ABC is a right-angled triangle. Applying Pythagoras theorem,

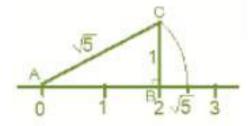
 $AB^2 + BC^2 = CA^2$

 $2^2+1^2 = CA^2 \Rightarrow CA^2 = 5$

 \Rightarrow CA = $\sqrt{5}$. Thus, CA is a line of length $\sqrt{5}$ unit.

Step 5: Taking CA as a radius and A as a center draw an arc touching the number line. The point at which number line get intersected by arc is at $\sqrt{5}$ distance from 0 because it is a radius of the circle whose center was A.

Thus, $\sqrt{5}$ is represented on the number line as shown in the figure.



4. Classroom activity (Constructing the 'square root spiral'): Take a large sheet of paper and construct the 'square root spiral' in the following fashion. Start with a point O and draw a line segment OP1 of unit length. Draw a line segment P1P2 perpendicular to OP_1 of unit length (see Fig. 1.9). Now draw a line segment P_2P_3 perpendicular to OP_2 . Then draw a line segment P_3P_4 perpendicular to OP_3 . Continuing in Fig. 1.9:

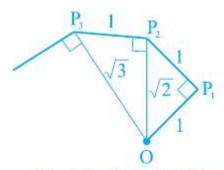
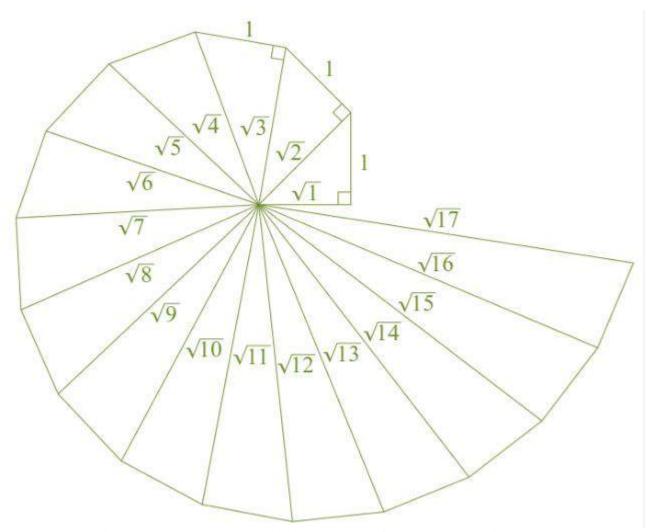


Fig. 1.9: Constructing square root spiral

Constructing this manner, you can get the line segment $P_{n-1}Pn$ by square root spiral drawing a line segment of unit length perpendicular to OP_{n-1} . In this manner, you will have created the points P_2 , P_3 ,...., P_n ,...., and joined them to create a beautiful spiral depicting $\sqrt{2}$, $\sqrt{3}$, $\sqrt{4}$, ... Solution:



- Step 1: Mark a point O on the paper. Here, O will be the center of the square root spiral.
- Step 2: From O, draw a straight line, OA, of 1cm horizontally.
- Step 3: From A, draw a perpendicular line, AB, of 1 cm.
- Step 4: Join OB. Here, OB will be of $\sqrt{2}$
- Step 5: Now, from B, draw a perpendicular line of 1 cm and mark the end point C.
- Step 6: Join OC. Here, OC will be of $\sqrt{3}$
- Step 7: Repeat the steps to draw $\sqrt{4}$, $\sqrt{5}$, $\sqrt{6}$

Exercise 1.3

Page: 14

- 1. Write the following in decimal form and say what kind of decimal expansion each has:
- (i) 36/100

Solution:

= 0.36 (Terminating)

(ii) 1/11

Solution:

= 0.0909... = 0.09 (Non terminating and repeating)

(iii)
$$4\frac{1}{8}$$

$$4\frac{1}{8} = \frac{33}{8}$$

	4.125
8	4.125 33 32
	32
	10
	8
	20
	16
	40
	40
	0

= 4.125 (Terminating)

(iii) **3/13**

Solution:

 $= 0.230769... = 0.\overline{230769}$

(iv)2/11 Solution:

= 0.181818181818... = 0.18 (Non terminating and repeating)

(iv) 329/400

Solution:

2. You know that $1/7 = 0.1\overline{42857}$. Can you predict what the decimal expansions of 2/7, 3/7, 4/7, 5/7, 6/7 are, without actually doing the long division? If so, how?

[Hint: Study the remainders while finding the value of 1/7 carefully.] Solution:

$$1/7 = 0.142857$$

 $\therefore 2 \times 1/7 = 2 \times 0.142857 = 0.285714$
 $3 \times 1/7 = 3 \times 0.142857 = 0.428571$
 $4 \times 1/7 = 4 \times 0.142857 = 0.571428$
 $5 \times 1/7 = 5 \times 0.142857 = 0.714285$
 $6 \times 1/7 = 6 \times 0.142857 = 0.857142$

- 3. Express the following in the form p/q, where p and q are integers and $q \neq 0$.
 - (i) 0.6

Solution:

0.
$$\overline{6}$$
= 0.666...
Assume that $x = 0.666...$
Then, $10x = 6.666...$
 $10x = 6 + x$
 $9x = 6$
 $x = 2/3$

(ii) 0.47

$$_{0.4\bar{7}} = 0.4777...$$

```
= (4/10) + (0.777.../10)

Assume that x = 0.777...

Then, 10x = 7.777...

10x = 7 + x

x = 7/9

(4/10) + (0.777.../10) = (4/10) + (7/90) (\therefore x = 7/9 and x = 0.777... \Rightarrow 0.777.../10 = 7/(9 × 10) = 7/90)

= (36/90) + (7/90) = 43/90

(iii) 0. \overline{001}

Solution:

0. \overline{001} = 0.001001...

Assume that x = 0.001001...

Then, 1000x = 1.001001...

1000x = 1 + x

1000x = 1 + x

1000x = 1
```

4. Express 0.99999.... in the form p/q. Are you surprised by your answer? With your teacher and classmates discuss why the answer makes sense.

```
Solution:
Assume that x = 0.9999... Eq (a)
Multiplying both sides by 10,
10x = 9.9999... Eq. (b)
Eq.(b) – Eq.(a), we get
10x = 9.9999...
-x = -0.9999...
9x = 9
x = 1
```

The difference between 1 and 0.999999 is 0.000001 which is negligible. Hence, we can conclude that, 0.999 is too much near 1, therefore, 1 as the answer can be justified.

5. What can the maximum number of digits be in the repeating block of digits in the decimal expansion of 1/17? Perform the division to check your answer.

Solution: 1/17
Dividing 1 by 17:

0.0588235294117647			
17	1		
	10		
	0		
	100		
	85		
•	150		
	136		
,	140		
	136		
•	40		
	34		
	60	1	
	51		
ı	90	1	
	85		
	50		
	34		
	160		
	<u>153</u>		
	70		
	68		
	20		
	17 30		
	17		
	130		
	119		
	110	1	
	102		
	80	•	
	68		
	120		
	119		
	1		

$$\frac{1}{17}$$
 = 0.0588235294117647

 \therefore There are 16 digits in the repeating block of the decimal expansion of 1/17.

6. Look at several examples of rational numbers in the form p/q ($q \neq 0$), where p and q are integers with no common factors other than 1 and having terminating decimal representations (expansions). Can you guess what property q must satisfy?

Solution:

We observe that when q is 2, 4, 5, 8, 10... Then the decimal expansion is terminating. For example:

1/2 = 0.5, denominator $q = 2^1$

7/8 = 0.875, denominator q = 2^3

4/5 = 0. 8, denominator $q = 5^1$

We can observe that the terminating decimal may be obtained in the situation where prime factorization of the denominator of the given fractions has the power of only 2 or only 5 or both.

7. Write three numbers whose decimal expansions are non-terminating non-recurring.

Solution

We know that all irrational numbers are non-terminating non-recurring. : three numbers with decimal expansions that are non-terminating non-recurring are:

- a) $\sqrt{3} = 1.732050807568$
- b) $\sqrt{26} = 5.099019513592$
- c) $\sqrt{101} = 10.04987562112$
- 8. Find three different irrational numbers between the rational numbers 5/7 and 9/11.

Solution:

$$\frac{5}{7} = 0.\overline{714285}$$

$$\frac{9}{11} = 0.\overline{81}$$

- : Three different irrational numbers are:
- a) 0.73073007300073000073...
- b) 0.75075007300075000075...
- c) 0.76076007600076000076...
- 9. Classify the following numbers as rational or irrational according to their type:

 $(i)\sqrt{23}$

Solution:

 $\sqrt{23} = 4.79583152331...$

Since the number is non-terminating non-recurring therefore, it is an irrational number.

 $(ii)\sqrt{225}$

Solution:

 $\sqrt{225} = 15 = 15/1$

Since the number can be represented in p/q form, it is a rational number.

(i) **0.3796**

Solution:

Since the number, 0.3796, is terminating, it is a rational number.

(ii) 7.478478

Solution:

The number, 7.478478, is non-terminating but recurring, it is a rational number.

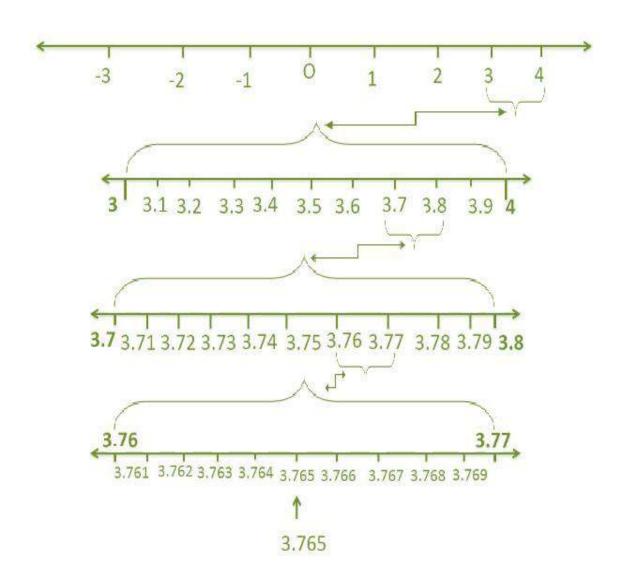
(iii) 1.101001000100001...

Solution:

Since the number, 1.101001000100001..., is non-terminating non-repeating (non-recurring), it is an irrational number.

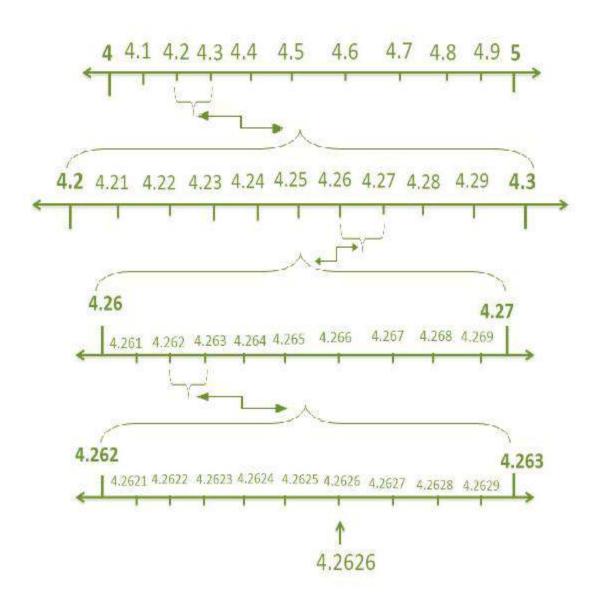
Exercise 1.4 Page: 18

1. Visualise 3.765 on the number line, using successive magnification. Solution:



2. Visualise $4.\overline{.26}$ on the number line, up to 4 decimal places.

- $4.\overline{26} = 4.26262626...$
- **4**.**26** up to 4 decimal places= 4.2626



Exercise 1.5 Page: 24

1. Classify the following numbers as rational or irrational:

(i)2 –√5

Solution:

We know that, $\sqrt{5} = 2.2360679...$

Here, 2.2360679...is non-terminating and non-recurring.

Now, substituting the value of $\sqrt{5}$ in $2-\sqrt{5}$, we get,

 $2 - \sqrt{5} = 2 - 2.2360679... = -0.2360679$

Since the number, -0.2360679..., is non-terminating non-recurring, $2-\sqrt{5}$ is an irrational number.

(ii)
$$(3 + \sqrt{23}) - \sqrt{23}$$

Solution:

Solution:

$$(3 + \sqrt{23}) - \sqrt{23} = 3 + \sqrt{23} - \sqrt{23}$$

 $= 3$
 $= 3/1$

Since the number 3/1 is in p/q form, $(3 + \sqrt{23})$ - $\sqrt{23}$ is rational.

(iii) $2\sqrt{7}/7\sqrt{7}$

Solution:

 $2\sqrt{7}/7\sqrt{7} = (2/7) \times (\sqrt{7}/\sqrt{7})$

We know that $(\sqrt{7}/\sqrt{7}) = 1$

Hence, $(2/7) \times (\sqrt{7}/\sqrt{7}) = (2/7) \times 1 = 2/7$

Since the number, 2/7 is in p/q form, $2\sqrt{7}/7\sqrt{7}$ is rational.

(iv) $1/\sqrt{2}$

Solution:

Multiplying and dividing numerator and denominator by $\sqrt{2}$ we get,

 $(1/\sqrt{2}) \times (\sqrt{2}/\sqrt{2}) = \sqrt{2}/2$ (since $\sqrt{2} \times \sqrt{2} = 2$)

We know that, $\sqrt{2} = 1.4142...$

Then, $\sqrt{2/2} = 1.4142/2 = 0.7071...$

Since the number, 0.7071...is non-terminating non-recurring, $1/\sqrt{2}$ is an irrational number.

$(v)2\pi$

Solution:

We know that, the value of $\pi = 3.1415$

Hence, $2\pi = 2 \times 3.1415... = 6.2830...$

Since the number, 6.2830..., is non-terminating non-recurring, 2π is an irrational number.

2. Simplify each of the following expressions:

(i)
$$(3+\sqrt{3})(2+\sqrt{2})$$

 $(3+\sqrt{3})(2+\sqrt{2})$

Opening the brackets, we get, $(3\times2)+(3\times\sqrt{2})+(\sqrt{3}\times2)+(\sqrt{3}\times\sqrt{2})$ = $6+3\sqrt{2}+2\sqrt{3}+\sqrt{6}$

(ii) $(3+\sqrt{3})(2+\sqrt{2})$

Solution:

$$(3+\sqrt{3})(2+\sqrt{2}) = 3^2 - (\sqrt{3})^2 = 9-3$$

= 6

(iii) $(\sqrt{5}+\sqrt{2})^2$

Solution:

$$(\sqrt{5}+\sqrt{2})^2 = \sqrt{5^2+(2\times\sqrt{5}\times\sqrt{2})}+\sqrt{2^2}$$

= 5+2\times\cdot10+2 = 7+2\sqrt{10}

(iv) $(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2})$

Solution:

$$(\sqrt{5}-\sqrt{2})(\sqrt{5}+\sqrt{2}) = (\sqrt{5}^2-\sqrt{2}^2) = 5-2 = 3$$

3. Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter, (say d). That is, $\pi = c/d$. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?

Solution:

There is no contradiction. When we measure a value with a scale, we only obtain an approximate value. We never obtain an exact value. Therefore, we may not realize whether c or d is irrational. The value of π is almost equal to 22/7 or 3.142857...

4. Represent ($\sqrt{9.3}$) on the number line.

Solution:

Step 1: Draw a 9.3 units long line segment, AB. Extend AB to C such that BC=1 unit.

Step 2: Now, AC = 10.3 units. Let the centre of AC be O.

Step 3: Draw a semi-circle of radius OC with centre O.

Step 4: Draw a BD perpendicular to AC at point B intersecting the semicircle at D. Join OD.

Step 5: OBD, obtained, is a right angled triangle.

Here, OD 10.3/2 (radius of semi-circle), OC = 10.3/2, BC = 1

$$OB = OC - BC$$

$$\Rightarrow$$
 (10.3/2)-1 = 8.3/2

Using Pythagoras theorem,

We get,

$$OD^2 = BD^2 + OB^2$$

$$\Rightarrow$$
 (10.3/2)² = BD²+(8.3/2)²

$$\Rightarrow$$
 BD² = $(10.3/2)^2 - (8.3/2)^2$

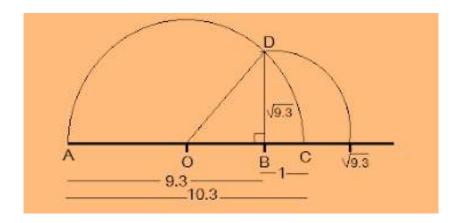
$$\Rightarrow$$
 (BD)² = (10.3/2)-(8.3/2)(10.3/2)+(8.3/2)

$$\Rightarrow$$
 BD² = 9.3

$$\Rightarrow$$
 BD = $\sqrt{9.3}$

Thus, the length of BD is $\sqrt{9.3}$ units.

Step 6: Taking BD as radius and B as centre draw an arc which touches the line segment. The point where it touches the line segment is at a distance of $\sqrt{9.3}$ from O as shown in the figure.



5. Rationalize the denominators of the following:

(i) $1/\sqrt{7}$

Solution:

Multiply and divide $1/\sqrt{7}$ by $\sqrt{7}$ $(1\times\sqrt{7})/(\sqrt{7}\times\sqrt{7}) = \sqrt{7}/7$

(ii) $1/(\sqrt{7}-\sqrt{6})$

Solution:

Multiply and divide $1/(\sqrt{7}-\sqrt{6})$ by $(\sqrt{7}+\sqrt{6})$

 $[1/(\sqrt{7}-\sqrt{6})]\times(\sqrt{7}+\sqrt{6})/(\sqrt{7}+\sqrt{6}) = (\sqrt{7}+\sqrt{6})/(\sqrt{7}-\sqrt{6})(\sqrt{7}+\sqrt{6})$

- = $(\sqrt{7}+\sqrt{6})/\sqrt{7^2}-\sqrt{6^2}$ [denominator is obtained by the property, $(a+b)(a-b)=a^2-b^2$]
- $=(\sqrt[4]{7}+\sqrt{6})/(7-6)$
- $=(\sqrt{7}+\sqrt{6})/1$
- $=\sqrt{7}+\sqrt{6}$

(iii) $1/(\sqrt{5}+\sqrt{2})$

Solution:

Multiply and divide $1/(\sqrt{5}+\sqrt{2})$ by $(\sqrt{5}-\sqrt{2})$

 $[1/(\sqrt{5}+\sqrt{2})]\times(\sqrt{5}-\sqrt{2})/(\sqrt{5}-\sqrt{2}) = (\sqrt{5}-\sqrt{2})/(\sqrt{5}+\sqrt{2})(\sqrt{5}-\sqrt{2})$

- $=(\sqrt{5}-\sqrt{2})/(\sqrt{5^2}-\sqrt{2^2})$ [denominator is obtained by the property, $(a+b)(a-b)=a^2-b^2$]
- $=(\sqrt{5}-\sqrt{2})/(5-2)$
- $=(\sqrt{5}-\sqrt{2})/3$

(iv) $1/(\sqrt{7-2})$

Solution:

Multiply and divide $1/(\sqrt{7}-2)$ by $(\sqrt{7}+2)$

 $1/(\sqrt{7-2}) \times (\sqrt{7+2})/(\sqrt{7+2}) = (\sqrt{7+2})/(\sqrt{7-2})(\sqrt{7+2})$

- $=(\sqrt{7}+2)/(\sqrt{7^2}-2^2)$ [denominator is obtained by the property, $(a+b)(a-b)=a^2-b^2$]
- $=(\sqrt{7}+2)/(7-4)$
- $=(\sqrt{7}+2)/3$

Exercise 1.6

Page: 26

1. Find:

$(i)64^{1/2}$

Solution:

$$64^{1/2} = (8 \times 8)^{1/2}$$

$$= (8^2)^{1/2}$$

$$= 8^1 \quad (2 \times 1/2 = 2/2 = 1)$$

$$= 8$$

$(ii)32^{1/5}$

Solution:

$$32^{1/5} = (2^5)^{1/5}$$

$$= (2^5)^{1/5}$$

$$= 2^1$$

$$= 2$$

$$= 2$$
[5×1/5 = 1]

(iii) $125^{1/3}$

Solution:

$$(125)^{1/3} = (5 \times 5 \times 5)^{1/3}$$

$$= (5^3)^{1/3}$$

$$= 5^1$$

$$= 5$$

$$(3 \times 1/3 = 3/3 = 1)$$

2. Find:

$(i)9^{3/2}$

Solution:

$$9^{3/2} = (3\times3)^{3/2}$$

$$= (3^2)^{3/2}$$

$$= 3^3$$

$$= 27$$

$$[2\times3/2 = 3]$$

$(ii)32^{2/5}$

Solution:

$$32^{2/5} = (2 \times 2 \times 2 \times 2 \times 2)^{2/5}$$

$$= (2^5)^{2/5}$$

$$= 2^2$$

$$= 4$$

$$[5 \times 2/5 = 2]$$

(iii) $16^{3/4}$

$$16^{3/4} = (2 \times 2 \times 2 \times 2)^{3/4}$$
$$= (2^4)^{3/4}$$
$$= 2^3 \quad [4 \times 3/4 = 3]$$

=8

(iv)
$$125^{-1/3}$$

 $125^{-1/3} = (5 \times 5 \times 5)^{-1/3}$
 $= (5^3)^{-1/3}$
 $= 5^{-1}$ [$3 \times -1/3 = -1$]
 $= 1/5$

3. Simplify:

(i) $2^{2/3} \times 2^{1/5}$

Solution:

$$2^{2/3} \times 2^{1/5} = 2^{(2/3)+(1/5)}$$
 [Since, $a^m \times a^n = a^{m+n}$ Laws of exponents]
= $2^{13/15}$ [2/3 + 1/5 = $(2 \times 5 + 3 \times 1)/(3 \times 5) = 13/15$]

(ii) $(1/3^3)^7$

Solution:

$$(1/3^3)^7 = (3^{-3})^7$$
 [Since, $(a^m)^n = a^{m \times n}$ Laws of exponents]
= 3^{-27}

(iii) $11^{1/2}/11^{1/4}$

Solution:

$$11^{1/2}/11^{1/4} = 11^{(1/2)-(1/4)}$$

$$= 11^{1/4} [(1/2) - (1/4) = (1 \times 4 - 2 \times 1)/(2 \times 4) = 4 - 2)/8 = 2/8 = \frac{1}{4}]$$

(iv) $7^{1/2} \times 8^{1/2}$

$$7^{1/2} \times 8^{1/2} = (7 \times 8)^{1/2}$$
 [Since, $(a^m \times b^m = (a \times b)^m$ ____ Laws of exponents = $56^{1/2}$