Exercise 13.8 Page No: 236

1. Find the volume of a sphere whose radius is

(i) 7 cm (ii) 0.63 m

(Assume $\pi = 22/7$)

Solution:

(i) Radius of sphere, r = 7 cm Using, Volume of sphere = $(4/3) \pi r^3$ = $(4/3) \times (22/7) \times 7^3$ = 4312/3Hence, volume of the sphere is 4312/3 cm³

(ii) Radius of sphere, r = 0.63 m Using, volume of sphere = $(4/3) \pi r^3$ = $(4/3) \times (22/7) \times 0.63^3$ = 1.0478Hence, volume of the sphere is 1.05 m^3 (approx).

2. Find the amount of water displaced by a solid spherical ball of diameter

(i) 28 cm (ii) 0.21 m (Assume $\pi = 22/7$)

Solution:

(i) Diameter = 28 cm Radius, r = 28/2 cm = 14cm Volume of the solid spherical ball = $(4/3) \pi r^3$ Volume of the ball = $(4/3) \times (22/7) \times 14^3 = 34496/3$ Hence, volume of the ball is $34496/3 \text{ cm}^3$

(ii) Diameter = 0.21 m Radius of the ball =0.21/2 m= 0.105 m Volume of the ball = $(4/3)\pi r^3$ Volume of the ball = $(4/3)\times(22/7)\times0.105^3$ m³ Hence, volume of the ball = 0.004851 m³

3.The diameter of a metallic ball is 4.2cm. What is the mass of the ball, if the density of the metal is 8.9 g per cm³? (Assume π =22/7)

Solution:

Given,

Diameter of a metallic ball = 4.2 cm

Radius(r) of the metallic ball, r = 4.2/2 cm = 2.1 cm

Volume formula = $4/3 \pi r^3$

Volume of the metallic ball = $(4/3)\times(22/7)\times2.1$ cm³

Volume of the metallic ball = 38.808 cm^3

Now, using relationship between, density, mass and volume,

Density = Mass/Volume

 $Mass = Density \times volume$

 $= (8.9 \times 38.808) g$

= 345.3912 g

Mass of the ball is 345.39 g (approx).

4. The diameter of the moon is approximately one-fourth of the diameter of the earth. What fraction of the volume of the earth is the volume of the moon?

Solution:

Let the diameter of earth be "d". Therefore, the radius of earth will be will be d/2 Diameter of moon will be d/4 and the radius of moon will be d/8

Find the volume of the moon:

Volume of the moon = $(4/3) \pi r^3 = (4/3) \pi (d/8)^3 = 4/3\pi (d^3/512)$

Find the volume of the earth:

Volume of the earth = $(4/3) \pi r^3 = (4/3) \pi (d/2)^3 = 4/3\pi (d^3/8)$

Fraction of the volume of the earth is the volume of the moon

Volume of the moon/ volume of the earth
$$\frac{\frac{4}{3}\pi(\frac{d^3}{512})}{\frac{4}{3}\pi(\frac{d^3}{8})} = 8/512 = 1/64$$

Answer: Volume of moon is of the 1/64 volume of earth.

5. How many litres of milk can a hemispherical bowl of diameter 10.5cm hold? (Assume $\pi = 22/7$)

Solution:

Diameter of hemispherical bowl = 10.5 cm

Radius of hemispherical bowl, r = 10.5/2 cm = 5.25 cm

Formula for volume of the hemispherical bowl = $(2/3) \pi r^3$

Volume of the hemispherical bowl = $(2/3)\times(22/7)\times5.25^3 = 303.1875$ Volume of the hemispherical bowl is 303.1875 cm³

Capacity of the bowl = (303.1875)/1000 L = 0.303 litres(approx.)Therefore, hemispherical bowl can hold 0.303 litres of milk.

6. A hemi spherical tank is made up of an iron sheet 1cm thick. If the inner radius is 1 m, then find the volume of the iron used to make the tank. (Assume $\pi = 22/7$)

Solution:

Inner Radius of the tank, (r) = 1mOuter Radius (R) = 1.01m

Volume of the iron used in the tank = $(2/3) \pi (R^3 - r^3)$

Put values,

Volume of the iron used in the hemispherical tank = $(2/3)\times(22/7)\times(1.01^3-1^3) = 0.06348$ So, volume of the iron used in the hemispherical tank is 0.06348 m³.

7. Find the volume of a sphere whose surface area is 154 cm². (Assume $\pi = 22/7$)

Solution:

Let r be the radius of a sphere. Surface area of sphere = $4\pi r^2$ $4\pi r^2 = 154$ cm² (given) $r^2 = (154 \times 7)/(4 \times 22)$ r = 7/2Radius is 7/2 cm Now, Volume of the sphere = $(4/3) \pi r^3$

Volume of the sphere = $(4/3)\times(22/7)\times(7/2)^3 = 179\frac{2}{3}$

Volume of the sphere is $179\frac{2}{3}$ cm³

8. A dome of a building is in the form of a hemi sphere. From inside, it was white-washed at the cost of Rs. 4989.60. If the cost of white-washing isRs20 per square meter, find the (i) inside surface area of the dome (ii) volume of the air inside the dome (Assume $\pi = 22/7$)

Solution:

(i) Cost of white-washing the dome from inside = Rs 4989.60 Cost of white-washing $1m^2$ area = Rs 20

CSA of the inner side

of dome =
$$498.96/2 \text{ m}^2 = 249.48 \text{ m}^2$$

(ii) Let the inner radius of the hemispherical dome be r.

CSA of inner side of dome = 249.48 m^2 (from (i))

Formula to find CSA of a hemi sphere = $2\pi r^2$

$$2\pi r^2 = 249.48$$

$$2 \times (22/7) \times r^2 = 249.48$$

$$r^2 = (249.48 \times 7)/(2 \times 22)$$

$$r^2 = 39.69$$

$$r = 6.3$$

So, radius is 6.3 m

Volume of air inside the dome = Volume of hemispherical dome

Using formula, volume of the hemisphere = $2/3 \pi r^3$

$$= (2/3) \times (22/7) \times 6.3 \times 6.3 \times 6.3$$

$$= 523.908$$

$$= 523.9$$
(approx.)

Answer: Volume of air inside the dome is 523.9 m³.

9. Twenty-seven solid iron spheres, each of radius r and surface area S are melted to form a sphere with surface area S'. Find the

- (i) radius r' of the new sphere,
- (ii) ratio of Sand S'.

Solution:

Volume of the solid sphere = $(4/3)\pi r^3$

Volume of twenty seven solid sphere = $27 \times (4/3)\pi r^3 = 36 \pi r^3$

(i) New solid iron sphere radius = r'

Volume of this new sphere = $(4/3)\pi(r')^3$

$$(4/3)\pi(r')^3 = 36 \pi r^3$$

$$(r')^3 = 27r^3$$

$$r'=3r$$

Radius of new sphere will be 3r (thrice the radius of original sphere)

ii) Surface area of iron sphere of radius r, S = $4\pi r^2$

Surface area of iron sphere of radius r'= 4π (r')²

Now

$$S/S' = (4\pi r^2)/(4\pi (r')^2)$$

$$S/S' = r^2/(3r')^2 = 1/9$$

The ratio of S and S' is 1: 9.

10. A capsule of medicine is in the shape of a sphere of diameter 3.5mm. How much medicine (in mm³) is needed to fill this capsule? (Assume $\pi = 22/7$)

Solution:

Diameter of capsule = 3.5 mm Radius of capsule, say r = diameter/ 2 = (3.5/2) mm = 1.75mm Volume of spherical capsule = $4/3 \pi r^3$ Volume of spherical capsule = $(4/3)\times(22/7)\times(1.75)^3 = 22.458$

Answer: The volume of the spherical capsule is 22.46 mm³.

