BYJU NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

Exercise: 6.1

(Page No: 96)

1. In Fig. 6.13, lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$, find $\angle BOE$ and reflex $\angle COE$.

Solution:

From the diagram, we have $(\angle AOC + \angle BOE + \angle COE)$ and $(\angle COE + \angle BOD + \angle BOE)$ forms a straight line. So, $\angle AOC + \angle BOE + \angle COE = \angle COE + \angle BOD + \angle BOE = 180^{\circ}$ Now, by putting the values of $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$ we get $\angle COE = 110^{\circ}$ and $\angle BOE = 30^{\circ}$

2. In Fig. 6.14, lines XY and MN intersect at O. If $\angle POY = 90^{\circ}$ and a : b = 2 : 3, find c.

https://byjus.com

Solution:

We know that the sum of linear pair are always equal to 180° So, $\angle POY + a + b = 180^{\circ}$ Putting the value of $\angle POY = 90^{\circ}$ (as given in the question) we get, $a+b = 90^{\circ}$ Now, it is given that a : b = 2 : 3 so, Let a be 2x and b be 3x $\therefore 2x+3x = 90^{\circ}$ Solving this we get $5x = 90^{\circ}$ So, $x = 18^{\circ}$ $\therefore a = 2 \times 18^{\circ} = 36^{\circ}$ Similarly, b can be calculated and the value will be $b = 3 \times 18^{\circ} = 54^{\circ}$

From the diagram, b+c also forms a straight angle so, b+c = 180°

⇒ c+54° = 180° ∴ c = 126°

3. In Fig. 6.15, \angle PQR = \angle PRQ, then prove that \angle PQS = \angle PRT.

Solution:

Since ST is a straight line so, $\angle PQS + \angle PAR = 180^{\circ}$ (linear pair) and $\angle PRT + \angle PRQ = 180^{\circ}$ (linear pair) Now, $\angle PQS + \angle PAR = \angle PRT + \angle PRQ = 180^{\circ}$

https://byjus.com

BYJU: NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

Since $\angle PQR = \angle PRQ$ (as given in the question) $\angle PQS = \angle PRT$. (Hence proved).

4. In Fig. 6.16, if x+y = w+z, then prove that AOB is a line.

Solution:

For proving AOB is a straight line, we will have to prove x+y is a linear pair i.e. x+y = 180° We know that the angles around a point are 360° so, x+y+w+z = 360° In the question, it is given that, x+y = w+z So, (x+y)+(x+y) = 360° $\Rightarrow 2(x+y) = 360°$ $\therefore (x+y) = 180°$ (Hence proved).

5. In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle ROS = \frac{1}{2} (\angle QOS - \angle POS)$.

NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

Fig. 6.17

Solution:

In the question, it is given that (OR \perp PQ) and \angle POQ = 180° So, \angle POS+ \angle ROS+ \angle ROQ = 180° Now, \angle POS+ \angle ROS = 180°-90° (Since \angle POR = \angle ROQ = 90°) $\therefore \angle$ POS + \angle ROS = 90° Now, \angle QOS = \angle ROQ+ \angle ROS It is given that \angle ROQ = 90°, $\therefore \angle$ QOS = 90° + \angle ROS Or, \angle QOS + \angle ROS = 90° As \angle POS + \angle ROS = 90° and \angle QOS + \angle ROS = 90°, we get \angle POS + \angle ROS = \angle QOS + \angle ROS \Rightarrow 2 \angle ROS + \angle POS = \angle QOS Or, \angle ROS = $\frac{1}{2}$ (\angle QOS - \angle POS) (Hence proved).

6. It is given that $\angle XYZ = 64^{\circ}$ and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $\angle ZYP$, find $\angle XYQ$ and reflex $\angle QYP$. Solution:

X 64° P Y

Here, XP is a straight line So, $\angle XYZ + \angle ZYP = 180^{\circ}$ Putting the value of $\angle XYZ = 64^{\circ}$ we get, $64^{\circ} + \angle ZYP = 180^{\circ}$ $\therefore \angle ZYP = 116^{\circ}$ From the diagram, we also know that $\angle ZYP = \angle ZYQ + \angle QYP$ Now, as YQ bisects $\angle ZYP$, $\angle ZYQ = \angle QYP$ Or, $\angle ZYP = 2\angle ZYQ$ $\therefore \angle ZYQ = \angle QYP = 58^{\circ}$

Again, $\angle XYQ = \angle XYZ + \angle ZYQ$ By putting the value of $\angle XYZ = 64^{\circ}$ and $\angle ZYQ = 58^{\circ}$ we get. $\angle XYQ = 64^{\circ}+58^{\circ}$ Or, $\angle XYQ = 122^{\circ}$ Now, reflex $\angle QYP = 180^{\circ}+\angle XYQ$ We computed that the value of $\angle XYQ = 122^{\circ}$. So, $\angle QYP = 180^{\circ}+122^{\circ}$ $\therefore \angle QYP = 302^{\circ}$