BYJU NCERT Solutions For Class 9 Maths Chapter 7- Triangles

Exercise: 7.2

(Page No: 123)

1. In an isosceles triangle ABC, with AB = AC, the bisectors of $\angle B$ and $\angle C$ intersect each other at O. Join A to O. Show that:

(i) OB = OC (ii) AO bisects $\angle A$

Solution:

Given:

 \rightarrow AB = AC and

 $\rightarrow\,$ the bisectors of $\angle B$ and $\angle C$ intersect each other at O

- (i) Since ABC is an isosceles with AB = AC,
- $\Rightarrow \angle B = \angle C$

⇒ ½ ∠B = ½ ∠C

- $\Rightarrow \angle OBC = \angle OCB$ (Angle bisectors)
- \therefore OB = OC (Side opposite to the equal angles are equal.)

(ii) In $\triangle AOB$ and $\triangle AOC$, AB = AC (Given in the question) AO = AO (Common arm) OB = OC (As Proved Already) So, $\triangle AOB \cong \triangle AOC$ by SSS congruence condition. $\angle BAO = \angle CAO$ (by CPCT) Thus, AO bisects $\angle A$.

2. In \triangle ABC, AD is the perpendicular bisector of BC (see Fig. 7.30). Show that \triangle ABC is an isosceles triangle in which AB = AC.

Solution:

It is given that AD is the perpendicular bisector of BC **To prove:** AB = AC **Proof:** In $\triangle ADB$ and $\triangle ADC$, AD = AD (It is the Common arm) $\angle ADB = \angle ADC$ BD = CD (Since AD is the perpendicular bisector) So, $\triangle ADB \cong \triangle ADC$ by **SAS congruency criterion**. Thus, AB = AC (by CPCT)

3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see Fig. 7.31). Show that these altitudes are equal.

Solution: Given: (i) BE and CF are altitudes. (ii) AC = AB

To prove:

BE = CF

Proof:

Triangles ΔAEB and ΔAFC are similar by AAS congruency since

 $\angle A = \angle A$ (It is the common arm)

 $\angle AEB = \angle AFC$ (They are right angles)

AB = AC (Given in the question)

: $\Delta AEB \cong \Delta AFC$ and so, BE = CF (by CPCT).

4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig. 7.32). Show that

(i) $\triangle ABE \cong \triangle ACF$

(ii) AB = AC, i.e., ABC is an isosceles triangle.

Solution:

It is given that BE = CF

(i) In $\triangle ABE$ and $\triangle ACF$,

 $\angle A = \angle A$ (It is the common angle)

 $\angle AEB = \angle AFC$ (They are right angles)

BE = CF (Given in the question)

 $\therefore \Delta ABE \cong \Delta ACF$ by **AAS congruency condition**.

(ii) AB = AC by CPCT and so, ABC is an isosceles triangle.

5. ABC and DBC are two isosceles triangles on the same base BC (see Fig. 7.33). Show that $\angle ABD = \angle ACD$.

BYJU' NCERT Solutions For Class 9 Maths Chapter 7- Triangles

Solution:

In the question, it is given that ABC and DBC are two isosceles triangles.

We will have to show that $\angle ABD = \angle ACD$

Proof:

Triangles ΔABD and ΔACD are similar by SSS congruency since

AD = AD (It is the common arm)

AB = AC (Since ABC is an isosceles triangle)

BD = CD (Since BCD is an isosceles triangle)

So, $\triangle ABD \cong \triangle ACD$.

 $\therefore \angle ABD = \angle ACD$ by CPCT.

6. \triangle ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see Fig. 7.34). Show that \angle BCD is a right angle.

Solution:

JU NCERT Solutions For Class 9 Maths Chapter 7- Triangles

```
It is given that AB = AC and AD = AB
We will have to now prove \angleBCD is a right angle.
Proof:
Consider \triangle ABC,
AB = AC (It is given in the question)
Also, \angle ACB = \angle ABC (They are angles opposite to the equal sides and so, they are equal)
Now, consider \triangle ACD,
AD = AB
Also, \angle ADC = \angle ACD (They are angles opposite to the equal sides and so, they are equal)
Now,
In ∆ABC,
\angle CAB + \angle ACB + \angle ABC = 180^{\circ}
So, \angle CAB + 2 \angle ACB = 180^{\circ}
\Rightarrow \angle CAB = 180^{\circ} - 2 \angle ACB --- (i)
Similarly, in \triangle ADC,
\angleCAD = 180° - 2\angleACD --- (ii)
also,
\angle CAB + \angle CAD = 180^{\circ} (BD is a straight line.)
Adding (i) and (ii) we get,
∠CAB + ∠CAD = 180° - 2∠ACB+180° - 2∠ACD
\Rightarrow 180° = 360° - 2\angleACB-2\angleACD
\Rightarrow 2(\angle ACB + \angle ACD) = 180^{\circ}
\Rightarrow \angle BCD = 90^{\circ}
```

7. ABC is a right-angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

Solution:

In the question, it is given that

BYJUC NCERT Solutions For Class 9 Maths Chapter 7- Triangles

 $\angle A = 90^{\circ} \text{ and } AB = AC$ AB = AC $\Rightarrow \angle B = \angle C$ (They are angles opposite to the equal sides and so, they are equal) Now, $\angle A + \angle B + \angle C = 180^{\circ}$ (Since the sum of the interior angles of the triangle) $\therefore 90^{\circ} + 2\angle B = 180^{\circ}$ $\Rightarrow 2\angle B = 90^{\circ}$ $\Rightarrow \angle B = 45^{\circ}$ So, $\angle B = \angle C = 45^{\circ}$

8. Show that the angles of an equilateral triangle are 60° each.

Solution:

Let ABC be an equilateral triangle as shown below:

⇒ $\angle A = \angle B = \angle C$ (Sides opposite to the equal angles are equal.) Also, we know that $\angle A + \angle B + \angle C = 180^{\circ}$ ⇒ $3\angle A = 180^{\circ}$ ⇒ $\angle A = 60^{\circ}$ $\therefore \angle A = \angle B = \angle C = 60^{\circ}$ So, the angles of an equilateral triangle are always 60° each.