YJU NCERT Solutions For Class 9 Maths Chapter 7- Triangles

Exercise: 7.3

(Page No: 128)

1. \triangle ABC and \triangle DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig. 7.39). If AD is extended to intersect BC at P, show that

(i) $\triangle ABD \cong \triangle ACD$

(ii) $\triangle ABP \cong \triangle ACP$

- (iii) AP bisects $\angle A$ as well as $\angle D$.
- (iv) AP is the perpendicular bisector of BC.

Solution:

In the above question, it is given that \triangle ABC and \triangle DBC are two isosceles triangles.

(i) $\triangle ABD$ and $\triangle ACD$ are similar by SSS congruency because: AD = AD (It is the common arm) AB = AC (Since $\triangle ABC$ is isosceles) BD = CD (Since $\triangle DBC$ is isosceles)

 $\therefore \Delta ABD \cong \Delta ACD.$

(ii) $\triangle ABP$ and $\triangle ACP$ are similar as: AP = AP (It is the common side) $\angle PAB = \angle PAC$ (by CPCT since $\triangle ABD \cong \triangle ACD$) AB = AC (Since $\triangle ABC$ is isosceles) So, $\triangle ABP \cong \triangle ACP$ by SAS congruency condition.

(iii) $\angle PAB = \angle PAC$ by CPCT as $\triangle ABD \cong \triangle ACD$. AP bisects $\angle A$. --- (i) Also, $\triangle BPD$ and $\triangle CPD$ are similar by SSS congruency as


```
PD = PD (It is the common side)
BD = CD (Since \triangleDBC is isosceles.)
BP = CP (by CPCT as \triangleABP \cong \triangleACP)
So, \triangleBPD \cong \triangleCPD.
Thus, \angleBDP = \angleCDP by CPCT. --- (ii)
Now by comparing (i) and (ii) it can be said that AP bisects \angleA as well as \angleD.
```

```
(iv) \angle BPD = \angle CPD (by CPCT as \triangle BPD \cong \triangle CPD)
and BP = CP --- (i)
also,
\angle BPD + \angle CPD = 180^{\circ} (Since BC is a straight line.)
\Rightarrow 2\angle BPD = 180^{\circ}
\Rightarrow \angle BPD = 90^{\circ} --- (ii)
Now, from equations (i) and (ii), it can be said that
AP is the perpendicular bisector of BC.
```

2. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that

(i) AD bisects BC (ii) AD bisects $\angle A$.

Solution:

It is given that AD is an altitude and AB = AC. The diagram is as follows:

(i) In $\triangle ABD$ and $\triangle ACD$, $\angle ADB = \angle ADC = 90^{\circ}$ AB = AC (It is given in the question) AD = AD (Common arm)

∴ $\triangle ABD \cong \triangle ACD$ by RHS congruence condition. Now, by the rule of CPCT, BD = CD. So, AD bisects BC

(ii) Again, by the rule of CPCT, \angle BAD = \angle CAD Hence, AD bisects \angle A.

3. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR (see Fig. 7.40). Show that:

(i) $\Delta ABM \cong \Delta PQN$

Fig. 7.40

Solution:

Given parameters are: AB = PQ, BC = QR and AM = PN

(i) $\frac{1}{2}$ BC = BM and $\frac{1}{2}$ QR = QN (Since AM and PN are medians) Also, BC = QR So, $\frac{1}{2}$ BC = $\frac{1}{2}$ QR \Rightarrow BM = QN In \triangle ABM and \triangle PQN, AM = PN and AB = PQ (As given in the question) BM = QN (Already proved) $\therefore \triangle$ ABM $\cong \triangle$ PQN by SSS congruency.

(ii) In $\triangle ABC$ and $\triangle PQR$, AB = PQ and BC = QR (As given in the question) $\angle ABC = \angle PQR$ (by CPCT)

So, $\triangle ABC \cong \triangle PQR$ by SAS congruency.

4. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

Solution:

It is known that BE and CF are two equal altitudes. Now, in \triangle BEC and \triangle CFB, \angle BEC = \angle CFB = 90° (Same Altitudes) BC = CB (Common side) BE = CF (Common side) So, \triangle BEC $\cong \triangle$ CFB by RHS congruence criterion. Also, \angle C = \angle B (by CPCT) Therefore, AB = AC as sides opposite to the equal angles is always equal.

5. ABC is an isosceles triangle with AB = AC. Draw AP \perp BC to show that \angle B = \angle C.

Solution:

In the question, it is given that AB = AC

Now, $\triangle ABP$ and $\triangle ACP$ are similar by RHS congruency as $\angle APB = \angle APC = 90^{\circ}$ (AP is altitude) AB = AC (Given in the question) AP = AP (Common side) So, $\triangle ABP \cong \triangle ACP$. $\therefore \angle B = \angle C$ (by CPCT)