Exercise: 7.1 (Page No: 118)

1. In quadrilateral ACBD, AC = AD and AB bisect \angle A (see Fig. 7.16). Show that \triangle ABC \cong \triangle ABD. What can you say about BC and BD?

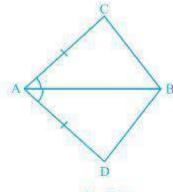


Fig. 7.16

Solution:

It is given that AC and AD are equal i.e. AC = AD and the line segment AB bisects \angle A. We will have to now prove that the two triangles ABC and ABD are similar i.e. \triangle ABC \cong \triangle ABD **Proof:**

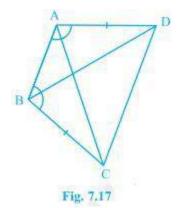
Consider the triangles ΔABC and ΔABD,

- (i) AC = AD (It is given in the question)
- (ii) AB = AB (Common)
- (iii) \angle CAB = \angle DAB (Since AB is the bisector of angle A)

So, by **SAS** congruency criterion, $\triangle ABC \cong \triangle ABD$.

For the 2nd part of the question, BC and BD are of equal lengths by the rule of C.P.C.T.

- 2. ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA (see Fig. 7.17). Prove that
- (i) $\triangle ABD \cong \triangle BAC$
- (ii) BD = AC
- (iii) $\angle ABD = \angle BAC$.



Solution:

The given parameters from the questions are $\angle DAB = \angle CBA$ and AD = BC.

(i) ΔABD and ΔBAC are similar by SAS congruency as

AB = BA (It is the common arm)

 \angle DAB = \angle CBA and AD = BC (These are given in the question)

So, triangles ABD and BAC are similar i.e. \triangle ABD \cong \triangle BAC. (Hence proved).

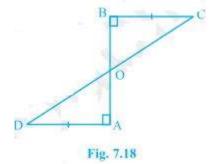
(ii) It is now known that $\triangle ABD \cong \triangle BAC$ so,

BD = AC (by the rule of CPCT).

(iii) Since $\triangle ABD \cong \triangle BAC$ so,

Angles $\angle ABD = \angle BAC$ (by the rule of CPCT).

3. AD and BC are equal perpendiculars to a line segment AB (see Fig. 7.18). Show that CD bisects AB.



Solution:

It is given that AD and BC are two equal perpendiculars to AB. We will have to prove that **CD** is the bisector of **AB** Now,

Triangles $\triangle AOD$ and $\triangle BOC$ are similar by AAS congruency since:

- (i) $\angle A = \angle B$ (They are perpendiculars)
- (ii) AD = BC (As given in the question)
- (iii) $\angle AOD = \angle BOC$ (They are vertically opposite angles)
- $\therefore \Delta AOD \cong \Delta BOC.$

So, AO = OB (by the rule of CPCT).

Thus, CD bisects AB (Hence proved).

4. I and m are two parallel lines intersected by another pair of parallel lines p and q (see Fig. 7.19). Show that \triangle ABC \cong \triangle CDA.

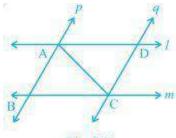


Fig. 7.19

Solution:

It is given that p II q and I II m

To prove:

Triangles ABC and CDA are similar i.e. \triangle ABC \cong \triangle CDA

Proof:

Consider the $\triangle ABC$ and $\triangle CDA$,

- (i) \angle BCA = \angle DAC and \angle BAC = \angle DCA Since they are alternate interior angles
- (ii) AC = CA as it is the common arm

So, by **ASA congruency criterion,** $\triangle ABC \cong \triangle CDA$.

5. Line I is the bisector of an angle $\angle A$ and B is any point on I. BP and BQ are perpendiculars from B to the arms of $\angle A$ (see Fig. 7.20). Show that:

- (i) $\triangle APB \cong \triangle AQB$
- (ii) BP = BQ or B is equidistant from the arms of $\angle A$.

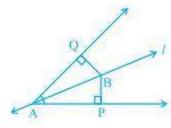


Fig. 7.20

https://byjus.com

Solution:

It is given that the line "l" is the bisector of angle $\angle A$ and the line segments BP and BQ are perpendiculars drawn from l.

(i) ΔAPB and ΔAQB are similar by AAS congruency because:

 $\angle P = \angle Q$ (They are the two right angles)

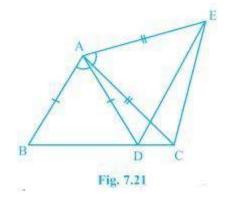
AB = AB (It is the common arm)

 \angle BAP = \angle BAQ (As line *l* is the bisector of angle A)

So, $\triangle APB \cong \triangle AQB$.

(ii) By the rule of CPCT, BP = BQ. So, it can be said the point B is equidistant from the arms of $\angle A$.

6. In Fig. 7.21, AC = AE, AB = AD and \angle BAD = \angle EAC. Show that BC = DE.



Solution:

It is given in the question that AB = AD, AC = AE, and \angle BAD = \angle EAC

To prove:

The line segment BC and DE are similar i.e. BC = DE

Proof:

We know that $\angle BAD = \angle EAC$

Now, by adding ∠DAC on both sides we get,

 $\angle BAD + \angle DAC = \angle EAC + \angle DAC$

This implies, $\angle BAC = \angle EAD$

Now, \triangle ABC and \triangle ADE are similar by SAS congruency since:

- (i) AC = AE (As given in the question)
- (ii) $\angle BAC = \angle EAD$
- (iii) AB = AD (It is also given in the question)

https://byjus.com

: Triangles ABC and ADE are similar i.e. \triangle ABC \cong \triangle ADE. So, by the rule of CPCT, it can be said that BC = DE.

- 7. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$ (see Fig. 7.22). Show that
- (i) $\triangle DAP \cong \triangle EBP$
- (ii) AD = BE

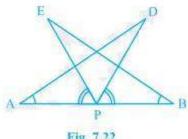


Fig. 7.22

Solutions:

In the question, it is given that P is the mid-point of line segment AB. Also, \angle BAD = \angle ABE and $\angle EPA = \angle DPB$

(i) It is given that $\angle EPA = \angle DPB$

Now, add ∠DPE on both sides,

 \angle EPA + \angle DPE = \angle DPB+ \angle DPE

This implies that angles DPA and EPB are equal i.e. \angle DPA = \angle EPB

Now, consider the triangles DAP and EBP.

 $\angle DPA = \angle EPB$

AP = BP (Since P is the mid-point of the line segment AB)

 \angle BAD = \angle ABE (As given in the question)

So, by **ASA congruency**, $\Delta DAP \cong \Delta EBP$.

- (ii) By the rule of CPCT, AD = BE.
- 8. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see Fig. 7.23). Show that:
- (i) $\triangle AMC \cong \triangle BMD$
- (ii) ∠DBC is a right angle.
- (iii) $\triangle DBC \cong \triangle ACB$

(iv) CM = $\frac{1}{2}$ AB

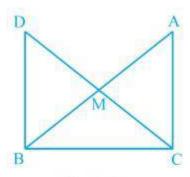


Fig. 7.23

Solution:

It is given that M is the mid-point of the line segment AB, \angle C = 90°, and DM = CM

(i) Consider the triangles \triangle AMC and \triangle BMD:

AM = BM (Since M is the mid-point)

CM = DM (Given in the question)

 \angle CMA = \angle DMB (They are vertically opposite angles)

So, by **SAS** congruency criterion, $\triangle AMC \cong \triangle BMD$.

(ii) $\angle ACM = \angle BDM$ (by CPCT)

∴ AC **II** BD as alternate interior angles are equal.

Now, \angle ACB + \angle DBC = 180° (Since they are co-interiors angles)

 \Rightarrow 90° + \angle B = 180°

∴ ∠DBC = 90°

(iii) In ΔDBC and ΔACB,

BC = CB (Common side)

 \angle ACB = \angle DBC (They are right angles)

DB = AC (by CPCT)

So, $\triangle DBC \cong \triangle ACB$ by **SAS congruency**.

(iv) DC = AB (Since \triangle DBC \cong \triangle ACB)

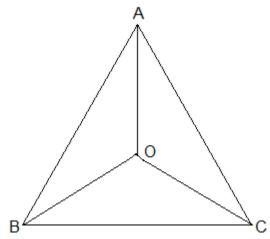
 \Rightarrow DM = CM = AM = BM (Since M the is mid-point)

So, DM + CM = BM + AM

Hence, CM + CM = AB

 \Rightarrow CM = (½) AB

1. In an isosceles triangle ABC, with AB = AC, the bisectors of \angle B and \angle C intersect each other at O. Join A to O. Show that:



Solution:

Given:

$$\rightarrow$$
 AB = AC and

 \rightarrow the bisectors of $\angle B$ and $\angle C$ intersect each other at O

(i) Since ABC is an isosceles with AB = AC,

$$\Rightarrow \angle B = \angle C$$

$$\Rightarrow$$
 ½ \angle B = ½ \angle C

$$\Rightarrow$$
 \angle OBC = \angle OCB (Angle bisectors)

∴ OB = OC (Side opposite to the equal angles are equal.)

(ii) In ΔAOB and ΔAOC,

AB = AC (Given in the question)

AO = AO (Common arm)

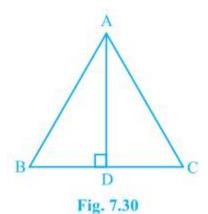
OB = OC (As Proved Already)

So, $\triangle AOB \cong \triangle AOC$ by SSS congruence condition.

 \angle BAO = \angle CAO (by CPCT)

Thus, AO bisects $\angle A$.

2. In \triangle ABC, AD is the perpendicular bisector of BC (see Fig. 7.30). Show that \triangle ABC is an isosceles triangle in which AB = AC.



Solution:

It is given that AD is the perpendicular bisector of BC

To prove:

AB = AC

Proof:

In ΔADB and ΔADC,

AD = AD (It is the Common arm)

 $\angle ADB = \angle ADC$

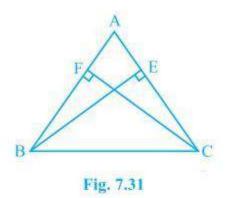
BD = CD (Since AD is the perpendicular bisector)

So, $\triangle ADB \cong \triangle ADC$ by **SAS** congruency criterion.

Thus,

AB = AC (by CPCT)

3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see Fig. 7.31). Show that these altitudes are equal.



Solution:

Given:

- (i) BE and CF are altitudes.
- (ii) AC = AB

To prove:

BE = CF

Proof:

Triangles ΔAEB and ΔAFC are similar by AAS congruency since

 $\angle A = \angle A$ (It is the common arm)

 \angle AEB = \angle AFC (They are right angles)

AB = AC (Given in the question)

 \therefore \triangle AEB \cong \triangle AFC and so, BE = CF (by CPCT).

4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig. 7.32). Show that

- (i) $\triangle ABE \cong \triangle ACF$
- (ii) AB = AC, i.e., ABC is an isosceles triangle.

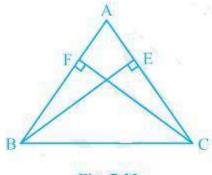


Fig. 7.32

Solution:

It is given that BE = CF

(i) In ΔABE and ΔACF,

 $\angle A = \angle A$ (It is the common angle)

 \angle AEB = \angle AFC (They are right angles)

BE = CF (Given in the question)

 \therefore $\triangle ABE \cong \triangle ACF$ by **AAS congruency condition**.

(ii) AB = AC by CPCT and so, ABC is an isosceles triangle.

5. ABC and DBC are two isosceles triangles on the same base BC (see Fig. 7.33). Show that \angle ABD = \angle ACD.

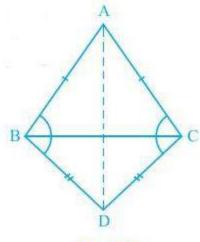


Fig. 7.33

Solution:

In the question, it is given that ABC and DBC are two isosceles triangles.

We will have to show that $\angle ABD = \angle ACD$

Proof:

Triangles ΔABD and ΔACD are similar by SSS congruency since

AD = AD (It is the common arm)

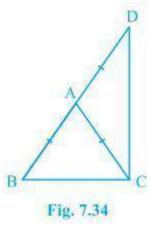
AB = AC (Since ABC is an isosceles triangle)

BD = CD (Since BCD is an isosceles triangle)

So, $\triangle ABD \cong \triangle ACD$.

 \therefore \angle ABD = \angle ACD by CPCT.

6. $\triangle ABC$ is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see Fig. 7.34). Show that $\angle BCD$ is a right angle.



Solution:

It is given that AB = AC and AD = AB

We will have to now prove $\angle BCD$ is a right angle.

Proof:

Consider AABC,

AB = AC (It is given in the question)

Also, \angle ACB = \angle ABC (They are angles opposite to the equal sides and so, they are equal)

Now, consider ΔACD,

AD = AB

Also, \angle ADC = \angle ACD (They are angles opposite to the equal sides and so, they are equal)

Now,

In ΔABC,

$$\angle$$
CAB + \angle ACB + \angle ABC = 180°

So,
$$\angle$$
CAB + 2 \angle ACB = 180°

$$\Rightarrow$$
 \angle CAB = 180° - 2 \angle ACB --- (i)

Similarly, in ΔADC,

$$\angle$$
CAD = 180° - 2 \angle ACD --- (ii)

also,

$$\angle$$
CAB + \angle CAD = 180° (BD is a straight line.)

Adding (i) and (ii) we get,

$$\angle$$
CAB + \angle CAD = 180° - 2 \angle ACB+180° - 2 \angle ACD

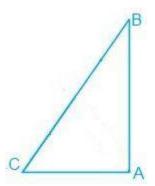
$$\Rightarrow$$
 180° = 360° - 2 \angle ACB-2 \angle ACD

$$\Rightarrow$$
 2(\angle ACB+ \angle ACD) = 180°

$$\Rightarrow$$
 \angle BCD = 90°

7. ABC is a right-angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

Solution:



In the question, it is given that

$$\angle$$
A = 90° and AB = AC

$$AB = AC$$

 \Rightarrow \angle B = \angle C (They are angles opposite to the equal sides and so, they are equal)

Now,

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 (Since the sum of the interior angles of the triangle)

$$...90^{\circ} + 2\angle B = 180^{\circ}$$

$$\Rightarrow 2\angle B = 90^{\circ}$$

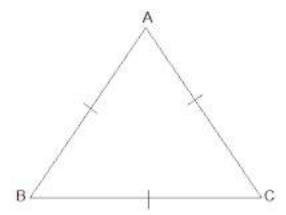
$$\Rightarrow$$
 \angle B = 45°

So,
$$\angle B = \angle C = 45^{\circ}$$

8. Show that the angles of an equilateral triangle are 60° each.

Solution:

Let ABC be an equilateral triangle as shown below:



Here, BC = AC = AB (Since the length of all sides is same)

$$\Rightarrow$$
 $\angle A = \angle B = \angle C$ (Sides opposite to the equal angles are equal.)

Also, we know that

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow$$
 \angle A = 60°

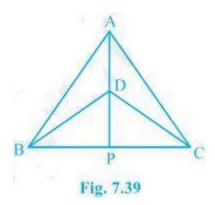
$$\therefore \angle A = \angle B = \angle C = 60^{\circ}$$

So, the angles of an equilateral triangle are always 60° each.

Exercise: 7.3 (Page No: 128)

1. \triangle ABC and \triangle DBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig. 7.39). If AD is extended to intersect BC at P, show that

- (i) $\triangle ABD \cong \triangle ACD$
- (ii) $\triangle ABP \cong \triangle ACP$
- (iii) AP bisects $\angle A$ as well as $\angle D$.
- (iv) AP is the perpendicular bisector of BC.



Solution:

In the above question, it is given that \triangle ABC and \triangle DBC are two isosceles triangles.

(i) \triangle ABD and \triangle ACD are similar by SSS congruency because:

AD = AD (It is the common arm)

AB = AC (Since $\triangle ABC$ is isosceles)

BD = CD (Since \triangle DBC is isosceles)

∴ \triangle ABD \cong \triangle ACD.

(ii) \triangle ABP and \triangle ACP are similar as:

AP = AP (It is the common side)

 \angle PAB = \angle PAC (by CPCT since \triangle ABD \cong \triangle ACD)

AB = AC (Since \triangle ABC is isosceles)

So, $\triangle ABP \cong \triangle ACP$ by SAS congruency condition.

(iii) $\angle PAB = \angle PAC$ by CPCT as $\triangle ABD \cong \triangle ACD$.

AP bisects $\angle A$. --- (i)

Also, \triangle BPD and \triangle CPD are similar by SSS congruency as

PD = PD (It is the common side)

BD = CD (Since \triangle DBC is isosceles.)

BP = CP (by CPCT as \triangle ABP \cong \triangle ACP)

So, $\triangle BPD \cong \triangle CPD$.

Thus, $\angle BDP = \angle CDP$ by CPCT. --- (ii)

Now by comparing (i) and (ii) it can be said that AP bisects $\angle A$ as well as $\angle D$.

(iv) \angle BPD = \angle CPD (by CPCT as \triangle BPD \cong \triangle CPD)

and BP = CP --- (i)

also,

 \angle BPD + \angle CPD = 180° (Since BC is a straight line.)

 $\Rightarrow 2\angle BPD = 180^{\circ}$

 \Rightarrow \angle BPD = 90° ---(ii)

Now, from equations (i) and (ii), it can be said that

AP is the perpendicular bisector of BC.

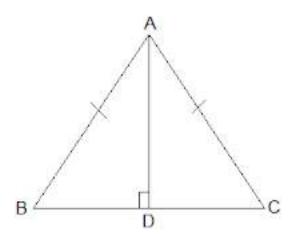
2. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that

(i) AD bisects BC

(ii) AD bisects $\angle A$.

Solution:

It is given that AD is an altitude and AB = AC. The diagram is as follows:



(i) In \triangle ABD and \triangle ACD,

 $\angle ADB = \angle ADC = 90^{\circ}$

AB = AC (It is given in the question)

AD = AD (Common arm)

 \therefore $\triangle ABD \cong \triangle ACD$ by RHS congruence condition.

Now, by the rule of CPCT,

BD = CD.

So, AD bisects BC

(ii) Again, by the rule of CPCT, \angle BAD = \angle CAD Hence, AD bisects \angle A.

- 3. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR (see Fig. 7.40). Show that:
- (i) $\triangle ABM \cong \triangle PQN$
- (ii) $\triangle ABC \cong \triangle PQR$

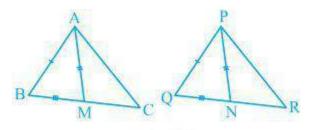


Fig. 7.40

Solution:

Given parameters are:

AB = PQ

BC = QR and

AM = PN

(i) ½ BC = BM and ½ QR = QN (Since AM and PN are medians)

Also, BC = QR

So, ½ BC = ½ QR

 \Rightarrow BM = QN

In $\triangle ABM$ and $\triangle PQN$,

AM = PN and AB = PQ (As given in the question)

BM = QN (Already proved)

∴ \triangle ABM \cong \triangle PQN by SSS congruency.

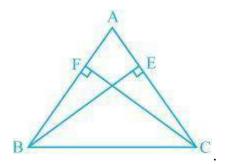
(ii) In ΔABC and ΔPQR,

AB = PQ and BC = QR (As given in the question)

 $\angle ABC = \angle PQR$ (by CPCT)

So, $\triangle ABC \cong \triangle PQR$ by SAS congruency.

4. BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.



Solution:

It is known that BE and CF are two equal altitudes.

Now, in ΔBEC and ΔCFB,

 \angle BEC = \angle CFB = 90° (Same Altitudes)

BC = CB (Common side)

BE = CF (Common side)

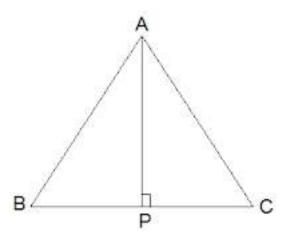
So, $\triangle BEC \cong \triangle CFB$ by RHS congruence criterion.

Also, $\angle C = \angle B$ (by CPCT)

Therefore, AB = AC as sides opposite to the equal angles is always equal.

5. ABC is an isosceles triangle with AB = AC. Draw AP \perp BC to show that \angle B = \angle C.

Solution:



In the question, it is given that AB = AC

Now, ΔABP and ΔACP are similar by RHS congruency as

 \angle APB = \angle APC = 90° (AP is altitude)

AB = AC (Given in the question)

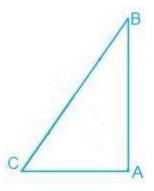
AP = AP (Common side)

So, $\triangle ABP \cong \triangle ACP$.

 $\therefore \angle B = \angle C$ (by CPCT)

Exercise: 7.4 (Page No: 132)

1. Show that in a right-angled triangle, the hypotenuse is the longest side.



Solution:

It is known that ABC is a triangle right angled at B.

We know that,

$$\angle A + \angle B + \angle C = 180^{\circ}$$

Now, if $\angle B + \angle C = 90^{\circ}$ then $\angle A$ has to be 90°.

Since A is the largest angle of the triangle, the side opposite to it must be the largest.

So, AB is the hypotenuse which will be the largest side of the above right-angled triangle i.e. ΔABC .

2. In Fig. 7.48, sides AB and AC of \triangle ABC are extended to points P and Q respectively. Also, \angle PBC < \angle QCB. Show that AC > AB.

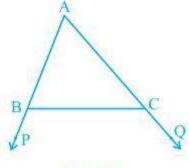


Fig. 7.48

Solution:

It is given that \angle PBC < \angle QCB We know that \angle ABC + \angle PBC = 180° So, \angle ABC = 180°- \angle PBC Also,

 \angle ACB + \angle QCB = 180°

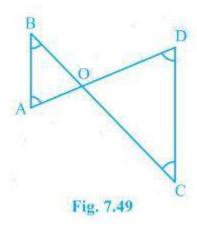
Therefore $\angle ACB = 180^{\circ} - \angle QCB$

Now, since $\angle PBC < \angle QCB$,

∴ ∠ABC > ∠ACB

Hence, AC > AB as sides opposite to the larger angle is always larger.

3. In Fig. 7.49, $\angle B < \angle A$ and $\angle C < \angle D$. Show that AD < BC.



Solution:

In the question, it is mentioned that angles B and angle C is smaller than angles A and D respectively i.e. $\angle B < \angle A$ and $\angle C < \angle D$.

Now,

Since the side opposite to the smaller angle is always smaller

AO < BO --- (i)

And OD < OC ---(ii)

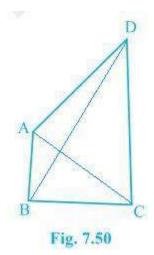
By adding equation (i) and equation (ii) we get

AO+OD < BO + OC

So, AD < BC

4. AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see Fig. 7.50).

Show that $\angle A > \angle C$ and $\angle B > \angle D$.



Solution:

In $\triangle ABD$, we see that

AB < AD < BD

So, $\angle ADB < \angle ABD ---$ (i) (Since angle opposite to longer side is always larger)

Now, in ΔBCD,

BC < DC < BD

Hence, it can be concluded that

∠BDC < ∠CBD --- (ii)

Now, by adding equation (i) and equation (ii) we get,

 $\angle ADB + \angle BDC < \angle ABD + \angle CBD$

 \Rightarrow \angle ADC < \angle ABC

 $\Rightarrow \angle B > \angle D$

Similarly, In triangle ABC,

 \angle ACB < \angle BAC --- (iii) (Since the angle opposite to the longer side is always larger)

Now, In ΔADC,

 \angle DCA < \angle DAC --- (iv)

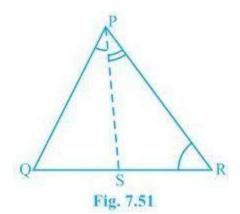
By adding equation (iii) and equation (iv) we get,

 \angle ACB + \angle DCA < \angle BAC+ \angle DAC

⇒ ∠BCD < ∠BAD

 $\therefore \angle A > \angle C$

5. In Fig 7.51, PR > PQ and PS bisect \angle QPR. Prove that \angle PSR > \angle PSQ.



Solution:

It is given that PR > PQ and PS bisects ∠QPR

Now we will have to prove that angle PSR is smaller than PSQ i.e. \angle PSR > \angle PSQ

Proof:

 $\angle QPS = \angle RPS --- (ii)$ (As PS bisects $\angle QPR$)

 $\angle PQR > \angle PRQ ---$ (i) (Since PR > PQ as angle opposite to the larger side is always larger)

 \angle PSR = \angle PQR + \angle QPS --- (iii) (Since the exterior angle of a triangle equals to the sum of opposite interior angles)

 \angle PSQ = \angle PRQ + \angle RPS --- (iv) (As the exterior angle of a triangle equals to the sum of opposite interior angles)

By adding (i) and (ii)

 $PQR + \angle QPS > \angle PRQ + \angle RPS$

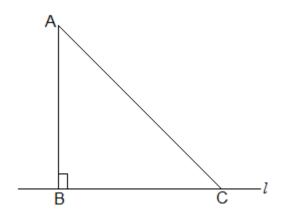
Thus, from (i), (ii), (iii) and (iv), we get

 $\angle PSR > \angle PSQ$

6. Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Solution:

First, let "l" be a line segment and "B" be a point lying on it. A line AB perpendicular to l is now drawn. Also, let C be any other point on l. The diagram will be as follows:



To prove:

AB < AC

Proof:

In $\triangle ABC$, $\angle B = 90^{\circ}$

Now, we know that

$$\angle A+\angle B+\angle C=180^{\circ}$$

Hence, $\angle C$ must be an acute angle which implies $\angle C < \angle B$

So, AB < AC (As the side opposite to the larger angle is always larger)