

Exercise 10.3

Page No: 447

1. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2, respectively having $\vec{a} \cdot \vec{b} = \sqrt{6}$

Solution:

Firstly let us consider,

$$\left|\vec{a}\right| = \sqrt{3}, \ \left|\vec{b}\right| = 2 \text{ and}, \ \vec{a} \cdot \vec{b} = \sqrt{6}$$

Now, we know that
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$
.
 $\therefore \sqrt{6} = \sqrt{3} \times 2 \times \cos \theta$
 $\cos \theta = \frac{\sqrt{6}}{\sqrt{3} \times 2}$
 $\cos \theta = \frac{1}{\sqrt{2}}$
 $\Rightarrow \theta = \frac{\pi}{4}$

Thus , the angle between the given vectors \vec{a} and \vec{b} is $\frac{\pi}{4}$

2. Find the angle between the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$ Solution:

Let us consider the

Given vectors are:
$$\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$$
 and $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$
 $|\vec{a}| = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}$
 $|\vec{b}| = \sqrt{3^2 + (-2)^2 + 1^2} = \sqrt{9 + 4 + 1} = \sqrt{14}$
Now, $\vec{a} \cdot \vec{b} = (\hat{i} - 2\hat{j} + 3\hat{k})(3\hat{i} - 2\hat{j} + \hat{k})$
 $= 1.3 + (-2)(-2) + 3.1$
 $= 3 + 4 + 3$
 $= 10$
Also. we know that $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$.
 $\therefore 10 = \sqrt{14}\sqrt{14} \cos \theta$
 $\cos \theta = \frac{10}{14}$
 $\theta = \cos^{-1}\left(\frac{5}{7}\right)$

Hence, the angle between the vectors is $\cos^{-1}(5/7)$.

3. Find the projection of the vector $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$.

Solution:

Firstly,

Let $\vec{a} = \hat{i} - \hat{j}$ and $\vec{b} = \hat{i} + \hat{j}$. Now, projection of vector \vec{a} on \vec{b} is given by,

$$\frac{1}{\left|\vec{b}\right|}\left(\vec{a}.\vec{b}\right) = \frac{1}{\sqrt{1+1}}\left\{1.1 + (-1)(1)\right\} = \frac{1}{\sqrt{2}}(1-1) = 0$$

Thus, the projection of vector \vec{a} on \vec{b} is 0.

4. Find the projection of the vector $\hat{i} + 3\hat{j} + 7\hat{k}$ on the vector $7\hat{i} - \hat{j} + 8\hat{k}$. Solution:

Firstly,

Let $\vec{a} = \hat{i} + 3\hat{j} + 7\hat{k}$ and $\hat{b} = 7\hat{i} - \hat{j} + 8\hat{k}$.

Now, projection of vector \vec{a} on \vec{b} is given by,

Now, projection of vector
$$\vec{a}$$
 on \vec{b} is given by,

$$\frac{1}{|\vec{b}|} (\vec{a} \cdot \vec{b}) = \frac{1}{\sqrt{7^2 + (-1)^2 + 8^2}} \{1(7) + 3(-1) + 7(8)\} = \frac{7 - 3 + 56}{\sqrt{49 + 1 + 64}} = \frac{60}{\sqrt{114}}$$
Hence, the projection is $60/\sqrt{114}$.

Hence, the projection is $60/\sqrt{114}$.

5. Show that each of the given three vectors is a unit vector:

$$\frac{1}{7} \Big(2\hat{i} + 3\hat{j} + 6\hat{k} \Big), \frac{1}{7} \Big(3\hat{i} - 6\hat{j} + 2\hat{k} \Big), \frac{1}{7} \Big(6\hat{i} + 2\hat{j} - 3\hat{k} \Big)$$

Also, show that they are mutually perpendicular to each other. Solution:

It is given that

Let
$$\vec{a} = \frac{1}{7} \left(2\hat{i} + 3\hat{j} + 6\hat{k} \right) = \frac{2}{7}\hat{i} + \frac{3}{7}\hat{j} + \frac{6}{7}\hat{k},$$

 $\vec{b} = \frac{1}{7} \left(3\hat{i} - 6\hat{j} + 2\hat{k} \right) = \frac{3}{7}\hat{i} - \frac{6}{7}\hat{j} + \frac{2}{7}\hat{k},$
 $\vec{c} = \frac{1}{7} \left(6\hat{i} + 2\hat{j} - 3\hat{k} \right) = \frac{6}{7}\hat{i} + \frac{2}{7}\hat{j} - \frac{3}{7}\hat{k}.$
 $|\vec{a}| = \sqrt{\left(\frac{2}{7}\right)^2 + \left(\frac{3}{7}\right)^2 + \left(\frac{6}{7}\right)^2} = \sqrt{\frac{4}{49} + \frac{9}{49} + \frac{36}{49}} = 1$
 $|\vec{b}| = \sqrt{\left(\frac{3}{7}\right)^2 + \left(-\frac{6}{7}\right)^2 + \left(\frac{2}{7}\right)^2} = \sqrt{\frac{9}{49} + \frac{36}{49} + \frac{4}{49}} = 1$
 $|\vec{c}| = \sqrt{\left(\frac{6}{7}\right)^2 + \left(\frac{2}{7}\right)^2 + \left(-\frac{3}{7}\right)^2} = \sqrt{\frac{36}{49} + \frac{4}{49} + \frac{9}{49}} = 1$

Hence, each of the given three vectors is a unit vector.

$$\vec{a} \cdot \vec{b} = \frac{2}{7} \times \frac{3}{7} + \frac{3}{7} \times \left(\frac{-6}{7}\right) + \frac{6}{7} \times \frac{2}{7} = \frac{6}{49} - \frac{18}{49} + \frac{12}{49} = 0$$
$$\vec{b} \cdot \vec{c} = \frac{3}{7} \times \frac{6}{7} + \left(\frac{-6}{7}\right) \times \frac{2}{7} + \frac{2}{7} \times \left(\frac{-3}{7}\right) = \frac{18}{49} - \frac{12}{49} - \frac{6}{49} = 0$$
$$\vec{c} \cdot \vec{a} = \frac{6}{7} \times \frac{2}{7} + \frac{2}{7} \times \frac{3}{7} + \left(\frac{-3}{7}\right) \times \frac{6}{7} = \frac{12}{49} + \frac{6}{49} - \frac{18}{49} = 0$$

Therefore, the given three vectors are mutually perpendicular to each other.

6. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 8$ and $|\vec{a}| = 8|\vec{b}|$

Solution:

Let us consider, $(\vec{a} \cdot \vec{b}) \cdot (\vec{a} - \vec{b}) = 8$ $\vec{a} \cdot \vec{a} - \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} - \vec{b} \cdot \vec{b} = 8$ $|\vec{a}|^2 - |\vec{b}|^2 = 8$ $(8|\vec{b}|)^2 - |\vec{b}|^2 = 8$ $(8|\vec{b}|)^2 - |\vec{b}|^2 = 8$ $(63|\vec{b}|^2 = 8$ $|\vec{b}|^2 = \frac{8}{63}$ $|\vec{b}|^2 = \frac{8}{63}$ $|\vec{b}| = \sqrt{\frac{8}{63}}$ [Magnitude of a vector is non-negative] $|\vec{b}| = \frac{2\sqrt{2}}{3\sqrt{7}}$ And, $|\vec{a}| = 8|\vec{b}| = \frac{8 \times 2\sqrt{2}}{3\sqrt{7}} = \frac{16\sqrt{2}}{3\sqrt{7}}$

7. Evaluate the product $(3\vec{a}-5\vec{b})\cdot(2\vec{a}+7\vec{b})$ Solution:

Let us consider the given expression,

$$\begin{aligned} \left(3\vec{a} - 5\vec{b}\right) \cdot \left(2\vec{a} + 7\vec{b}\right) \\ &= 3\vec{a} \cdot 2\vec{a} + 3\vec{a} \cdot 7\vec{b} - 5\vec{b} \cdot 2\vec{a} - 5\vec{b} \cdot 7\vec{b} \\ &= 6\vec{a} \cdot \vec{a} + 21\vec{a} \cdot \vec{b} - 10\vec{a} \cdot \vec{b} - 35\vec{b} \cdot \vec{b} \\ &= 6\left|\vec{a}\right|^2 + 11\vec{a} \cdot \vec{b} - 35\left|\vec{b}\right|^2 \end{aligned}$$

8. Find the magnitude of two vectors \vec{a} and \vec{b} , having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$. Solution:

Firstly,

Let θ be the angle between the vectors \vec{a} and \vec{b} . D AP It is given that $|\vec{a}| = |\vec{b}|$, $\vec{a} \cdot \vec{b} = \frac{1}{2}$, and $\theta = 60^{\circ}$(1) We know that $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$. $\therefore \frac{1}{2} = |\vec{a}| |\vec{a}| \cos 60^\circ$ $\left[\text{Using } (1) \right]$ $\frac{1}{2} = |\vec{a}|^2 \times \frac{1}{2}$ $|\vec{a}|^2 = 1$ $|\vec{a}| = |\vec{b}| = 1$ Hence the magnitude of two vectors is 1. 9. Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 12$ **Solution:** Let us consider, $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 12$ $\vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{a} - \vec{a} \cdot \vec{x} - \vec{a} \cdot \vec{a} = 12$ $|\vec{x}|^2 - |\vec{a}|^2 = 12$ $|\vec{x}|^2 - 1 = 12$ $[|\vec{a}| = 1 \text{ as } \vec{a} \text{ is a unit vector}]$ $|\vec{x}|^2 = 13$ $\therefore |\vec{x}| = \sqrt{13}$ Hence the value is $\sqrt{13}$.

10. If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} , then find the value of λ . Solution:

We know that the

Given vectors are $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$, and $\vec{c} = 3\hat{i} + \hat{j}$. Now, $\vec{a} + \lambda \vec{b} = (2\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(-\hat{i} + 2\hat{j} + \hat{k}) = (2 - \lambda)\hat{i} + (2 + 2\lambda)\hat{j} + (3 + \lambda)\hat{k}$ If $(\vec{a} + \lambda \vec{b})$ is perpendicular to \vec{c} , then $(\vec{a} + \lambda \vec{b}) \cdot \vec{c} = 0$. $[(2 - \lambda)\hat{i} + (2 + 2\lambda)\hat{j} + (3 + \lambda)\hat{k}] \cdot (3\hat{i} + \hat{j}) = 0$ $(2 - \lambda)3 + (2 + 2\lambda)1 + (3 + \lambda)0 = 0$ $6 - 3\lambda + 2 + 2\lambda = 0$ $-\lambda + 8 = 0$ $\lambda = 8$ Therefore, the required value of λ is 8.

11. Show that $|\vec{a}|\vec{b}+|\vec{b}|\vec{a}$ is perpendicular to $|\vec{a}|\vec{b}-|\vec{b}|\vec{a}$, for any two nonzero vectors \vec{a} and \vec{b} . Solution:

Let us consider,

 $\begin{aligned} \left(\left| \vec{a} \right| \vec{b} + \left| \vec{b} \right| \vec{a} \right) \cdot \left(\left| \vec{a} \right| \vec{b} - \left| \vec{b} \right| \vec{a} \right) \\ &= \left| \vec{a} \right|^2 \vec{b} \cdot \vec{b} - \left| \vec{a} \right| \left| \vec{b} \right| \vec{b} \cdot \vec{a} + \left| \vec{b} \right| \left| \vec{a} \right| \vec{a} \cdot \vec{b} - \left| \vec{b} \right|^2 \vec{a} \cdot \vec{a} \\ &= \left| \vec{a} \right|^2 \left| \vec{b} \right|^2 - \left| \vec{b} \right|^2 \left| \vec{a} \right|^2 \\ &= 0 \end{aligned}$

Therefore, $|\vec{a}|\vec{b} + |\vec{b}|\vec{a}$ and $|\vec{a}|\vec{b} - |\vec{b}|\vec{a}$ are perpendicular to each other.

12. If $\vec{a} \cdot \vec{a} = 0$ and $\vec{a} \cdot \vec{b} = 0$, then what can be concluded about the vector \vec{b} ? Solution:

We know Given, $\vec{a} \cdot \vec{a} = 0$ and $\vec{a} \cdot \vec{b} = 0$. Now

$$\vec{a} \cdot \vec{a} = 0 \Rightarrow \left| \vec{a} \right|^2 = 0 \Rightarrow \left| \vec{a} \right| = 0$$

 \vec{a} is a zero vector. Thus, vector \vec{b} satisfying $\vec{a} \cdot \vec{b} = 0$ can be any vector.

13. If \vec{a} , \vec{b} and \vec{c} are unit vectors such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, find the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$. Solution:

Consider the given vectors,

Given, $\vec{a} + \vec{b} + \vec{c} = \vec{0}$. So. $\vec{a} \cdot (\vec{a} + \vec{b} + \vec{c}) = \vec{a} \cdot \vec{0}$ $\vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = \vec{a} \cdot \vec{0}$ [Distributivity of scalar product over addition] ... (1) $\begin{bmatrix} \vec{a} \cdot \vec{a} = |\vec{a}| \cdot |\vec{a}| \cos 0^\circ = 1 \\ (\vec{a} \text{ is unit vector} \Rightarrow |\vec{a}| = 1) \end{bmatrix}$ $1 + \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0$ Next, $\vec{b} \cdot \left(\vec{a} + \vec{b} + \vec{c}\right) = \vec{b} \cdot \vec{0}$ $\vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{b} \cdot \vec{c} = \vec{b} \cdot \vec{0}$ $\vec{b} \cdot \vec{a} + 1 + \vec{b} \cdot \vec{c} = 0 \qquad \dots (2) \qquad \begin{bmatrix} \vec{b} \cdot \vec{b} = 1 \end{bmatrix}$ And. $\vec{c} \cdot \left(\vec{a} + \vec{b} + \vec{c}\right) = \vec{c} \cdot \vec{0}$ $\vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} + \vec{c} \cdot \vec{c} = \vec{c} \cdot \vec{0}$ $\vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} + 1 = 0$... (3) $[\vec{c} \cdot \vec{c} = 1]$ From (1), (2) and (3), $\left(1+\vec{a}\cdot\vec{b}+\vec{a}\cdot\vec{c}\right)+\left(\vec{b}\cdot\vec{a}+1+\vec{b}\cdot\vec{c}\right)+\left(\vec{c}\cdot\vec{a}+\vec{c}\cdot\vec{b}+1\right)=0+0+0$ $(3+\vec{a}\cdot\vec{b}+\vec{c}\cdot\vec{a})+(\vec{a}\cdot\vec{b}+\vec{b}\cdot\vec{c})+(\vec{c}\cdot\vec{a}+\vec{b}\cdot\vec{c})=0$ [Scalar product is commutative] $3+2\left(\vec{a}\cdot\vec{b}+\vec{b}\cdot\vec{c}+\vec{c}\cdot\vec{a}\right)=0$ $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = \frac{-3}{2}$

Hence the value is -3/2.

14. If either vector $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \cdot \vec{b} = 0$. But the converse need not be true. Justify your answer with an example. Solution:

Firstly,

Consider $\vec{a} = 2\hat{i} + 4\hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} + 3\hat{j} - 6\hat{k}$.

Then, their dot product is given by:

$$\vec{a} \cdot \vec{b} = 2.3 + 4.3 + 3(-6) = 6 + 12 - 18 = 0$$

Now, it's seen that
 $|\vec{a}| = \sqrt{2^2 + 4^2 + 3^2} = \sqrt{29}$
 $\therefore \vec{a} \neq \vec{0}$
 $|\vec{b}| = \sqrt{3^2 + 3^2 + (-6)^2} = \sqrt{54}$
 $\therefore \vec{b} \neq \vec{0}$

Therefore, the converse of the given statement need not be true.

15. If the vertices A, B, C of a triangle ABC are (1, 2, 3), (-1, 0, 0), (0, 1, 2), respectively, then find

 $\angle ABC. [\angle ABC \text{ is the angle between the vectors } \overrightarrow{BA} \text{ and } \overrightarrow{BC}]$ Solution:

We know

The vertices of $\triangle ABC$ are given as A (1, 2, 3), B (-1, 0, 0), and C (0, 1, 2). Also given, $\angle ABC$ is the angle between the vectors \overrightarrow{BA} and \overrightarrow{BC} . $\overrightarrow{BA} = \{1-(-1)\}\hat{i} + (2-0)\hat{j} + (3-0)\hat{k} = 2\hat{i} + 2\hat{j} + 3\hat{k}$ $\overrightarrow{BC} = \{0-(-1)\}\hat{i} + (1-0)\hat{j} + (2-0)\hat{k} = \hat{i} + \hat{j} + 2\hat{k}$ $\therefore \overrightarrow{BA} \cdot \overrightarrow{BC} = (2\hat{i} + 2\hat{j} + 3\hat{k}) \cdot (\hat{i} + \hat{j} + 2\hat{k}) = 2 \times 1 + 2 \times 1 + 3 \times 2 = 2 + 2 + 6 = 10$ $|\overrightarrow{BA}| = \sqrt{2^2 + 2^2 + 3^2} = \sqrt{4 + 4 + 9} = \sqrt{17}$ $|\overrightarrow{BC}| = \sqrt{1 + 1 + 2^2} = \sqrt{6}$ Now, we know that $\overrightarrow{BA} \cdot \overrightarrow{BC} = |\overrightarrow{BA}| ||\overrightarrow{BC}| \cos(\angle ABC)$. $\therefore 10 = \sqrt{17} \times \sqrt{6} \cos(\angle ABC)$ $\cos(\angle ABC) = \frac{10}{\sqrt{17} \times \sqrt{6}}$

$$\angle ABC = \cos^{-1} \left(\frac{10}{\sqrt{102}} \right)$$

Hence, the angle is $\cos^{-1}(10/\sqrt{102})$.

16. Show that the points A (1, 2, 7), B (2, 6, 3) and C (3, 10, -1) are collinear. Solution:

Let us consider

Given points are A (1, 2, 7), B (2, 6, 3), and C (3, 10, -1). Now,

$$\overline{AB} = (2-1)\hat{i} + (6-2)\hat{j} + (3-7)\hat{k} = \hat{i} + 4\hat{j} - 4\hat{k}$$

$$\overline{BC} = (3-2)\hat{i} + (10-6)\hat{j} + (-1-3)\hat{k} = \hat{i} + 4\hat{j} - 4\hat{k}$$

$$\overline{AC} = (3-1)\hat{i} + (10-2)\hat{j} + (-1-7)\hat{k} = 2\hat{i} + 8\hat{j} - 8\hat{k}$$

Now,

$$\left|\overline{AB}\right| = \sqrt{1^2 + 4^2} + (-4)^2 = \sqrt{1 + 16 + 16} = \sqrt{33}$$

$$\left|\overline{BC}\right| = \sqrt{1^2 + 4^2} + (-4)^2 = \sqrt{1 + 16 + 16} = \sqrt{33}$$

$$\left|\overline{AC}\right| = \sqrt{2^2 + 8^2 + 8^2} = \sqrt{4 + 64 + 64} = \sqrt{132} = 2\sqrt{33}$$

$$\therefore \left|\overline{AC}\right| = \left|\overline{AB}\right| + \left|\overline{BC}\right|$$

Therefore, the given points A, B, and C are collinear.

17. Show that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ form the vertices of a right angled triangle. Solution: Firstly consider. Let vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ be position vectors of points A, B, and C respectively. So. $\overrightarrow{OA} = 2\hat{i} - \hat{j} + \hat{k}$, $\overrightarrow{OB} = \hat{i} - 3\hat{j} - 5\hat{k}$ and $\overrightarrow{OC} = 3\hat{i} - 4\hat{j} - 4\hat{k}$ Now, vectors \overrightarrow{AB} , \overrightarrow{BC} , and \overrightarrow{AC} represent the sides of $\triangle ABC$. Hence, $\overrightarrow{AB} = (1-2)\hat{i} + (-3+1)\hat{j} + (-5-1)\hat{k} = -\hat{i} - 2\hat{j} - 6\hat{k}$ $\overrightarrow{BC} = (3-1)\hat{i} + (-4+3)\hat{j} + (-4+5)\hat{k} = 2\hat{i} - \hat{j} + \hat{k}$ $\overrightarrow{AC} = (2-3)\hat{i} + (-1+4)\hat{j} + (1+4)\hat{k} = -\hat{i} + 3\hat{j} + 5\hat{k}$ $\left| \overrightarrow{AB} \right| = \sqrt{(-1)^2 + (-2)^2 + (-6)^2} = \sqrt{1 + 4 + 36} = \sqrt{41}$ $\left| \overrightarrow{BC} \right| = \sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{4 + 1 + 1} = \sqrt{6}$ $\left| \overrightarrow{AC} \right| = \sqrt{\left(-1 \right)^2 + 3^2 + 5^2} = \sqrt{1 + 9 + 25} = \sqrt{35}$ $\therefore \left| \overrightarrow{BC} \right|^2 + \left| \overrightarrow{AC} \right|^2 = 6 + 35 = 41 = \left| \overrightarrow{AB} \right|^2$ Therefore, $\triangle ABC$ is a right-angled triangle.

18. If \vec{a} is a nonzero vector of magnitude 'a' and λ a nonzero scalar, then $\lambda \vec{a}$ is unit vector if (A) $\lambda = 1$ (B) $\lambda = -1$ (C) $a = |\lambda|$ (D) $a = 1/|\lambda|$ Solution: Explanation:

Vector $\lambda \vec{a}$ is a unit vector if $|\lambda \vec{a}| = 1$. Now,

 $|\lambda \vec{a}| = 1$

 $|\lambda||\vec{a}| = 1$

$$\begin{aligned} |\vec{a}| &= \frac{1}{|\lambda|} & [\lambda \neq 0] \\ a &= \frac{1}{|\lambda|} & [|\vec{a}| = a] \end{aligned}$$

Therefore, vector $\lambda \vec{a}$ is a unit vector if $a = \frac{1}{|\lambda|}$

The correct answer is D.