

Page No: 454

1. Find
$$|\vec{a} \times \vec{b}|_{i}$$
 if $\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$

Therefore,

$$\vec{a} = \vec{i} - 7\hat{j} + 7\hat{k} \text{ and } \vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -7 & 7 \\ 3 & -2 & 2 \end{vmatrix}$$

$$= \hat{i} (-14 + 14) - \hat{j} (2 - 21) + \hat{k} (-2 + 21) = 19\hat{j} + 19\hat{k}$$

$$\left|\vec{a} \times \vec{b}\right| = \sqrt{(19)^2 + (19)^2} = \sqrt{2 \times (19)^2} = 19\sqrt{2}$$

2. Find a unit vector perpendicular to each of the vector $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$

Solution:

It is given that, $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$ So, we have $\vec{a} + \vec{b} = 4\hat{i} + 4\hat{j}, \ \vec{a} - \vec{b} = 2\hat{i} + 4\hat{k}$ $(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4 \end{vmatrix} = \hat{i} (16) - \hat{j} (16) + \hat{k} (-8) = 16\hat{i} - 16\hat{j} - 8\hat{k}$ Thus. $\left|\left(\vec{a}+\vec{b}\right)\times\left(\vec{a}-\vec{b}\right)\right| = \sqrt{16^2 + (-16)^2 + (-8)^2}$ $=\sqrt{2^2 \times 8^2 + 2^2 \times 8^2 + 8^2}$ $=8\sqrt{2^2+2^2+1}=8\sqrt{9}=8\times 3=24$

Therefore, the unit vector perpendicular to each of the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ is given by the relation,

$$=\pm \frac{(\vec{a}+\vec{b}) \times (\vec{a}-\vec{b})}{\left|(\vec{a}+\vec{b}) \times (\vec{a}-\vec{b})\right|} = \pm \frac{16\hat{i}-16\hat{j}-8\hat{k}}{24}$$
$$=\pm \frac{2\hat{i}-2\hat{j}-\hat{k}}{3} = \pm \frac{2}{3}\hat{i} \mp \frac{2}{3}\hat{j} \mp \frac{1}{3}\hat{k}$$

3. If a unit vector \vec{a} makes an angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then find θ and hence, the compounds of ^a.

https://byjus.com

Solution:

Firstly, Let unit vector \vec{a} have (a_1, a_2, a_3) components. $\Rightarrow \vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$ As \vec{a} is a unit vector, $|\vec{a}| = 1$. Also given, that \vec{a} makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} , and an acute angle θ with \hat{k} . Then, we have $\cos\frac{\pi}{3} = \frac{a_1}{|\vec{a}|}$ $\Rightarrow \frac{1}{2} = a_1$ $\left[\left|\vec{a}\right|=1\right]$ $\cos\frac{\pi}{4} = \frac{a_2}{|\vec{a}|}$ $\Rightarrow \frac{1}{\sqrt{2}} = a_2 \qquad [|\vec{a}| = 1]$ Also, $\cos \theta = \frac{a_3}{|\vec{a}|}$. $\Rightarrow a_3 = \cos \theta$ Now. |a| = 1 $\sqrt{a_1^2 + a_2^2 + a_3^2} = 1$ $\left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + \cos^2\theta = 1$ $\frac{1}{4} + \frac{1}{2} + \cos^2 \theta = 1$ $\frac{3}{4} + \cos^2 \theta = 1$ $\cos^2 \theta = 1 - \frac{3}{4} = \frac{1}{4}$ $\cos\theta = \frac{1}{2} \Longrightarrow \theta = \frac{\pi}{3}$ $\therefore a_3 = \cos\frac{\pi}{3} = \frac{1}{2}$ Thus, $\theta = \frac{\pi}{3}$ and the components of \vec{a} are $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$ 4. Show that $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$

Solution:

Firstly consider the LHS, We have,

$$\begin{aligned} (\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) \\ = (\vec{a} - \vec{b}) \times \vec{a} + (\vec{a} - \vec{b}) \times \vec{b} \\ = \vec{a} \times \vec{a} - \vec{b} \times \vec{a} + \vec{a} \times \vec{b} - \vec{b} \times \vec{b} \\ = \vec{0} + \vec{a} \times \vec{b} + \vec{a} \times \vec{b} - \vec{0} \\ = 2(\vec{a} \times \vec{b}) \end{aligned}$$

[By distributivity of vector product over addition] [Again, by distributivity of vector product over addition]

5. Find
$$\lambda$$
 and μ if
Solution:
It is given that,
Given,
 $(2\hat{i}+6\hat{j}+27\hat{k}) \times (\hat{i}+\lambda\hat{j}+\mu\hat{k}) = \vec{0}$
 $\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 6 & 27 \\ 1 & \lambda & \mu \end{vmatrix} = 0\hat{i}+0\hat{j}+0\hat{k}$
 $\hat{i}(6\mu-27\lambda) - \hat{j}(2\mu-27) + \hat{k}(2\lambda-6) = 0\hat{i}+0\hat{j}+0\hat{k}$
On comparing the corresponding components, we have
 $6\mu-27\lambda = 0$
 $2\mu-27 = 0$
 $2\lambda-6 = 0$
Now,
 $2\lambda-6 = 0 \Rightarrow \lambda = 3$
 $2\mu-27 = 0 \Rightarrow \mu = \frac{27}{2}$
Thus, $\lambda = 3$ and $\mu = \frac{27}{2}$.

6. Given that $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = \vec{0}$. What can you conclude about the vectors \vec{a} and \vec{b} ? Solution:

It is given that,

 $\vec{a} \cdot \vec{b} = 0$ Then, (i) Either $|\vec{a}| = 0$ or $|\vec{b}| = 0$, or $\vec{a} \perp \vec{b}$ (in case \vec{a} and \vec{b} are non-zero) $\vec{a} \times \vec{b} = 0$ (ii) Either $|\vec{a}| = 0$ or $|\vec{b}| = 0$, or $\vec{a} \parallel \vec{b}$ (in case \vec{a} and \vec{b} are non-zero) But, \vec{a} and \vec{b} cannot be perpendicular and parallel simultaneously. Therefore, $|\vec{a}| = 0$ or $|\vec{b}| = 0$. 7. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ given as $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, b_1\hat{i} + b_2\hat{j} + b_3\hat{k}, c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. Then show that $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ Solution: It is given that, $\vec{a} = a_1\hat{i} + a_2\hat{j} + a_2\hat{k}, \ \vec{b} = b_1\hat{i} + b_2\hat{j} + b_2\hat{k}, \ \vec{c} = c_1\hat{i} + c_2\hat{j} + c_2\hat{k}$ $(\vec{b} + \vec{c}) = (b_1 + c_1)\hat{i} + (b_2 + c_2)\hat{j} + (b_3 + c_3)\hat{k}$ Now, $\vec{a} \times (\vec{b} + \vec{c}) \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \end{vmatrix}$ $=\hat{i}\left[a_{2}(b_{3}+c_{3})-a_{3}(b_{2}+c_{2})\right]-\hat{j}\left[a_{1}(b_{3}+c_{3})-a_{3}(b_{1}+c_{1})\right]+\hat{k}\left[a_{1}(b_{2}+c_{2})-a_{2}(b_{1}+c_{1})\right]$ $=\hat{i}\left[a_{2}b_{3}+a_{2}c_{3}-a_{3}b_{2}-a_{3}c_{2}\right]+\hat{j}\left[-a_{1}b_{3}-a_{1}c_{3}+a_{3}b_{1}+a_{3}c_{1}\right]+\hat{k}\left[a_{1}b_{2}+a_{1}c_{2}-a_{2}b_{1}-a_{2}c_{1}\right] \dots (1)$ And. $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$ $=\hat{i}[a_{2}b_{3}-a_{3}b_{2}]+\hat{j}[b_{1}a_{3}-a_{1}b_{3}]+\hat{k}[a_{1}b_{2}-a_{2}b_{1}]$ (2) $\vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ $=\hat{i}[a_{2}c_{3}-a_{3}c_{2}]+\hat{j}[a_{3}c_{1}-a_{1}c_{3}]+\hat{k}[a_{1}c_{2}-a_{2}c_{1}]$ (3) On adding (2) and (3), we get $\left(\vec{a}\times\vec{b}\right) + \left(\vec{a}\times\vec{c}\right) = \hat{i}\left[a_{2}b_{3} + a_{2}c_{3} - a_{3}b_{2} - a_{3}c_{2}\right] + \hat{j}\left[b_{1}a_{3} + a_{3}c_{1} - a_{1}b_{3} - a_{1}c_{3}\right] + \hat{k}\left[a_{1}b_{2} + a_{1}c_{2} - a_{2}b_{1} - a_{2}c_{1}\right]$ (4) From (1) and (4), we obtain $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ - Hence proved.

8. If either $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \times \vec{b} = \vec{0}$. Is the converse true? Justify your answer with an example.

Solution:

Firstly let us consider,

Take any parallel non-zero vectors so that $\vec{a} \times \vec{b} = \vec{0}$. Let $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$, $\vec{b} = 4\hat{i} + 6\hat{j} + 8\hat{k}$. Then, $\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 4 & 6 & 8 \end{vmatrix} = \hat{i} (24 - 24) - \hat{j} (16 - 16) + \hat{k} (12 - 12) = 0\hat{i} + 0\hat{j} + 0\hat{k} = \vec{0}$

Now, it's seen that $|\vec{a}| = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{29}$ $\therefore \vec{a} \neq \vec{0}$ $|\vec{b}| = \sqrt{4^2 + 6^2 + 8^2} = \sqrt{116}$ $\therefore \vec{b} \neq \vec{0}$

Thus, the converse of the given statement need not be true.

9. Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5). Solution:

We know,

Given A (1, 1, 2), B (2, 3, 5) and C (1, 5, 5) are the vertices of triangle ABC. The adjacent sides \overrightarrow{AB} and \overrightarrow{BC} of $\triangle ABC$ are given as:

$$\overrightarrow{AB} = (2-1)\hat{i} + (3-1)\hat{j} + (5-2)\hat{k} = \hat{i} + 2\hat{j} + 3\hat{k}$$

$$\overrightarrow{BC} = (1-2)\hat{i} + (5-3)\hat{j} + (5-5)\hat{k} = -\hat{i} + 2\hat{j}$$

Now,

Area of $\triangle ABC = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{BC}|$

$$\overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -1 & 2 & 0 \end{vmatrix} = \hat{i} (-6) - \hat{j} (3) + \hat{k} (2+2) = -6\hat{i} - 3\hat{j} + 4\hat{k}$$

$$\therefore \left| \overrightarrow{AB} \times \overrightarrow{BC} \right| = \sqrt{(-6)^2 + (-3)^2 + 4^2} = \sqrt{36 + 9 + 16} = \sqrt{61}$$

Therefore, the area of AABC : $\sqrt{61}$

Therefore, the area of $\triangle ABC_{is} \frac{\sqrt{61}}{2}$ square units.

10. Find the area of the parallelogram whose adjacent sides are determined by the

https://byjus.com

vector
$$\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$$
 and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$.

Solution:

Let us consider,

The area of the parallelogram whose adjacent sides are \vec{a} and \vec{b} is $|\vec{a} \times \vec{b}|$.

Now, the adjacent sides are given as:

$$\vec{a} = \hat{i} - \hat{j} + 3\hat{k} \text{ and } \vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$$

$$\therefore \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1 \end{vmatrix} = \hat{i} (-1 + 21) - \hat{j} (1 - 6) + \hat{k} (-7 + 2) = 20\hat{i} + 5\hat{j} - 5\hat{k}$$

$$\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \sqrt{20^2 + 5^2 + 5^2} = \sqrt{400 + 25 + 25} = 15\sqrt{2}$$

Therefore, the area of the given parallelogram is $15\sqrt{2}$ square units.

 $\frac{\sqrt{2}}{3}$, then $\vec{a} \times \vec{b}$ is a unit vector, if the angle 11. Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}| = 3$ and $|\vec{b}| = 3$ between a and b is

- (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

Solution:

Explanation:

Given,
$$\left|\vec{a}\right| = 3$$
 and $\left|\vec{b}\right| = \frac{\sqrt{2}}{3}$.

We know that $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \hat{n}$, where \hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b} and θ is the angle between \vec{a} and \vec{b}

Now,
$$\vec{a} \times \vec{b}$$
 is a unit vector if $|\vec{a} \times \vec{b}| = 1$.

$$\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = 1$$

$$\begin{vmatrix} \vec{a} & | \vec{b} \end{vmatrix} \sin \theta \, \hat{n} \end{vmatrix} = 1$$

$$\begin{vmatrix} \vec{a} & | \vec{b} \end{vmatrix} |\sin \theta | = 1$$

$$3 \times \frac{\sqrt{2}}{3} \times \sin \theta = 1$$

$$\sin \theta = \frac{1}{\sqrt{2}}$$

$$\theta = \frac{\pi}{4}$$

Thus $\vec{a} \times \vec{b}$ is a unit vector if the angle between \vec{a} and \vec{b} is

So, the correct answer is B.

https://byjus.com

12. Area of a rectangle having vertices A, B, C, and D with position

vectors (A) $\frac{1}{2}$ (B) 1 (C) 2 (D) 4 Solution:

Explanation:

The position vectors of vertices A, B, C, and D of rectangle ABCD are given as: $\overrightarrow{OA} = -\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \overrightarrow{OB} = \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \overrightarrow{OC} = \hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}, \ \overrightarrow{OD} = -\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$

The adjacent sides \overrightarrow{AB} and \overrightarrow{BC} of the given rectangle are given as.

$$\overrightarrow{AB} = (1+1)\hat{i} + \left(\frac{1}{2} - \frac{1}{2}\right)\hat{j} + (4-4)\hat{k} = 2\hat{i}$$
$$\overrightarrow{BC} = (1-1)\hat{i} + \left(-\frac{1}{2} - \frac{1}{2}\right)\hat{j} + (4-4)\hat{k} = -\hat{j}$$
$$\therefore \overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 0 \\ 0 & -1 & 0\end{vmatrix} = \hat{k}(-2) = -2\hat{k}$$
$$\Rightarrow \left|\overrightarrow{AB} \times \overrightarrow{BC}\right| = 2$$

We know that, the area of parallelogram whose adjacent sides are \vec{a} and \vec{b} is $|\vec{a} \times \vec{b}|$.

Thus, the area of the given rectangle is $|\overline{AB} \times \overline{BC}| = 2$ square units. So, the correct answer is C.