

NCERT Solution For Class 10 Maths Chapter 2- Polynomials

Exercise 2.2

Page: 33

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

Solutions:

(i) x^2 -2x -8 ⇒ x^2 -4x+2x-8 = x(x-4)+2(x-4) = (x-4)(x+2)

Therefore, zeroes of polynomial equation x^2-2x-8 are (4, -2)

Sum of zeroes = $4-2 = 2 = -(-2)/1 = -(Coefficient of x)/(Coefficient of x^2)$

Product of zeroes = $4 \times (-2) = -8 = -(8)/1 = (\text{Constant term})/(\text{Coefficient of } x^2)$

 $(ii)4s^2-4s+1$

 $\Rightarrow 4s^2 - 2s - 2s + 1 = 2s(2s - 1) - 1(2s - 1) = (2s - 1)(2s - 1)$

Therefore, zeroes of polynomial equation $4s^2-4s+1$ are (1/2, 1/2)

Sum of zeroes = $(\frac{1}{2})+(\frac{1}{2}) = 1 = -\frac{4}{4} = -(\text{Coefficient of s})/(\text{Coefficient of s}^2)$

Product of zeros = $(1/2)\times(1/2) = 1/4 = (\text{Constant term})/(\text{Coefficient of } s^2)$

(iii) 6x²-3-7x

 $\Rightarrow 6x^2 - 7x - 3 = 6x^2 - 9x + 2x - 3 = 3x(2x - 3) + 1(2x - 3) = (3x + 1)(2x - 3)$

Therefore, zeroes of polynomial equation $6x^2-3-7x$ are (-1/3, 3/2)

Sum of zeroes = $-(1/3)+(3/2) = (7/6) = -(Coefficient of x)/(Coefficient of x^2)$

Product of zeroes = $-(1/3)\times(3/2) = -(3/6) = (\text{Constant term})/(\text{Coefficient of } x^2)$

$(iv)4u^2+8u$

 \Rightarrow 4u(u+2)

Therefore, zeroes of polynomial equation $4u^2 + 8u$ are (0, -2).

Sum of zeroes = $0+(-2) = -2 = -(8/4) = = -(Coefficient of u)/(Coefficient of u^2)$

https://byjus.com

Product of zeroes = $0 \times -2 = 0 = 0/4 = (\text{Constant term})/(\text{Coefficient of } u^2)$

(v) t²-15

⇒ $t^2 = 15$ or $t = \pm \sqrt{15}$ Therefore, zeroes of polynomial equation $t^2 - 15$ are ($\sqrt{15}$, $-\sqrt{15}$)

Sum of zeroes = $\sqrt{15+(-\sqrt{15})} = 0 = -(0/1) = -(Coefficient of t) / (Coefficient of t^2)$

Product of zeroes = $\sqrt{15} \times (-\sqrt{15}) = -15 = -15/1 = (\text{Constant term}) / (\text{Coefficient of } t^2)$

(vi) $3x^2 - x - 4$

 $\Rightarrow 3x^2 - 4x + 3x - 4 = x(3x - 4) + 1(3x - 4) = (3x - 4)(x + 1)$

Therefore, zeroes of polynomial equation $3x^2 - x - 4$ are (4/3, -1)

Sum of zeroes = (4/3)+(-1) = (1/3) = -(-1/3) = -(Coefficient of x) / (Coefficient of x²)

Product of zeroes= $(4/3)\times(-1) = (-4/3) = (\text{Constant term}) / (\text{Coefficient of } x^2)$

2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.(i) 1/4, -1

Solution:

From the formulas of sum and product of zeroes, we know, Sum of zeroes = $\alpha + \beta$ Product of zeroes = $\alpha \beta$ Sum of zeroes = $\alpha + \beta = 1/4$ Product of zeroes = $\alpha \beta = -1$

 \therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:x²-(α + β)x + $\alpha\beta$ = 0

 $x^{2}-(1/4)x + (-1) = 0$

 $4x^2 - x - 4 = 0$

Thus, $4x^2 - x - 4$ is the quadratic polynomial.

NCERT Solution For Class 10 Maths Chapter 2- Polynomials

(ii)√2, 1/3

Solution:

Sum of zeroes = $\alpha + \beta = \sqrt{2}$ Product of zeroes = $\alpha \beta = 1/3$

 \therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

 $x^2 - (\alpha + \beta)x + \alpha\beta = 0$

 $x^2 - (\sqrt{2})x + (1/3) = 0$

 $3x^2 - 3\sqrt{2x+1} = 0$

Thus, $3x^2-3\sqrt{2x+1}$ is the quadratic polynomial.

(iii) 0, √5

Solution:

Given, Sum of zeroes = $\alpha + \beta = 0$ Product of zeroes = $\alpha \beta = \sqrt{5}$ \therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

 $x^2 - (\alpha + \beta)x + \alpha\beta = 0$

x²–(0)x +√5= 0

Thus, $x^2 + \sqrt{5}$ is the quadratic polynomial.

(iv) 1, 1

Solution:

Given, Sum of zeroes = $\alpha+\beta = 1$ Product of zeroes = $\alpha \beta = 1$

https://byjus.com

NCERT Solution For Class 10 Maths Chapter 2- Polynomials

 \therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

 $x^2-(\alpha+\beta)x+\alpha\beta=0$

 $x^2 - x + 1 = 0$

Thus , x^2-x+1 is the quadratic polynomial.

(v) -1/4, 1/4

Solution:

Given, Sum of zeroes = $\alpha+\beta = -1/4$ Product of zeroes = $\alpha \beta = 1/4$

: If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

 $x^2 - (\alpha + \beta)x + \alpha\beta = 0$

 x^{2} -(-1/4)x +(1/4) = 0

 $4x^2 + x + 1 = 0$

Thus, $4x^2 + x + 1$ is the quadratic polynomial.

(vi) 4, 1

Solution:

Given, Sum of zeroes = $\alpha+\beta = 4$ Product of zeroes = $\alpha\beta = 1$

: If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

 $x^2-(\alpha+\beta)x+\alpha\beta=0$

 $x^2 - 4x + 1 = 0$

Thus, x^2 –4x+1 is the quadratic polynomial.