

Exercise 2.1

Page: 28

1. The graphs of y = p(x) are given in Fig. 2.10 below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

Solutions:

Graphical method to find zeroes:-

Total number of zeroes in any polynomial equation = total number of times the curve intersects x-axis.

- (i) In the given graph, the number of zeroes of p(x) is 0 because the graph is parallel to x-axis does not cut it at any point.
- (ii) In the given graph, the number of zeroes of p(x) is 1 because the graph intersects the x-axis at only one point.
- (iii) In the given graph, the number of zeroes of p(x) is 3 because the graph intersects the x-axis at any three points.
- (iv) In the given graph, the number of zeroes of p(x) is 2 because the graph intersects the x-axis at two points.
- (v) In the given graph, the number of zeroes of p(x) is 4 because the graph intersects the x-axis at four points.
- (vi) In the given graph, the number of zeroes of p(x) is 3 because the graph intersects the x-axis at three points.

Exercise 2.2

Page: 33

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.

Solutions:

(i) x^2 -2x -8 ⇒ x^2 -4x+2x-8 = x(x-4)+2(x-4) = (x-4)(x+2)

Therefore, zeroes of polynomial equation x^2-2x-8 are (4, -2)

Sum of zeroes = $4-2 = 2 = -(-2)/1 = -(Coefficient of x)/(Coefficient of x^2)$

Product of zeroes = $4 \times (-2) = -8 = -(8)/1 = (\text{Constant term})/(\text{Coefficient of } x^2)$

 $(ii)4s^2-4s+1$

 $\Rightarrow 4s^2 - 2s - 2s + 1 = 2s(2s - 1) - 1(2s - 1) = (2s - 1)(2s - 1)$

Therefore, zeroes of polynomial equation $4s^2-4s+1$ are (1/2, 1/2)

Sum of zeroes = $(\frac{1}{2})+(\frac{1}{2}) = 1 = -\frac{4}{4} = -(\text{Coefficient of s})/(\text{Coefficient of s}^2)$

Product of zeros = $(1/2)\times(1/2) = 1/4 = (\text{Constant term})/(\text{Coefficient of } s^2)$

(iii) 6x²-3-7x

 $\Rightarrow 6x^2 - 7x - 3 = 6x^2 - 9x + 2x - 3 = 3x(2x - 3) + 1(2x - 3) = (3x + 1)(2x - 3)$

Therefore, zeroes of polynomial equation $6x^2-3-7x$ are (-1/3, 3/2)

Sum of zeroes = $-(1/3)+(3/2) = (7/6) = -(Coefficient of x)/(Coefficient of x^2)$

Product of zeroes = $-(1/3)\times(3/2) = -(3/6) = (\text{Constant term})/(\text{Coefficient of } x^2)$

$(iv)4u^2+8u$

 \Rightarrow 4u(u+2)

Therefore, zeroes of polynomial equation $4u^2 + 8u$ are (0, -2).

Sum of zeroes = $0+(-2) = -2 = -(8/4) = = -(Coefficient of u)/(Coefficient of u^2)$

Product of zeroes = $0 \times -2 = 0 = 0/4 = (\text{Constant term})/(\text{Coefficient of } u^2)$

(v) t²-15

⇒ $t^2 = 15$ or $t = \pm \sqrt{15}$ Therefore, zeroes of polynomial equation $t^2 - 15$ are ($\sqrt{15}$, $-\sqrt{15}$)

Sum of zeroes = $\sqrt{15+(-\sqrt{15})} = 0 = -(0/1) = -(Coefficient of t) / (Coefficient of t^2)$

Product of zeroes = $\sqrt{15} \times (-\sqrt{15}) = -15 = -15/1 = (\text{Constant term}) / (\text{Coefficient of } t^2)$

(vi) $3x^2 - x - 4$

 $\Rightarrow 3x^2 - 4x + 3x - 4 = x(3x - 4) + 1(3x - 4) = (3x - 4)(x + 1)$

Therefore, zeroes of polynomial equation $3x^2 - x - 4$ are (4/3, -1)

Sum of zeroes = (4/3)+(-1) = (1/3) = -(-1/3) = -(Coefficient of x) / (Coefficient of x²)

Product of zeroes= $(4/3)\times(-1) = (-4/3) = (\text{Constant term}) / (\text{Coefficient of } x^2)$

2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.(i) 1/4, -1

Solution:

From the formulas of sum and product of zeroes, we know, Sum of zeroes = $\alpha + \beta$ Product of zeroes = $\alpha \beta$ Sum of zeroes = $\alpha + \beta = 1/4$ Product of zeroes = $\alpha \beta = -1$

 \therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:x²-(α + β)x + $\alpha\beta$ = 0

 $x^{2}-(1/4)x + (-1) = 0$

 $4x^2 - x - 4 = 0$

Thus, $4x^2 - x - 4$ is the quadratic polynomial.

(ii)√2, 1/3

Solution:

Sum of zeroes = $\alpha + \beta = \sqrt{2}$ Product of zeroes = $\alpha \beta = 1/3$

: If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

 $x^2 - (\alpha + \beta)x + \alpha\beta = 0$

 $x^2 - (\sqrt{2})x + (1/3) = 0$

 $3x^2 - 3\sqrt{2x+1} = 0$

Thus, $3x^2-3\sqrt{2x+1}$ is the quadratic polynomial.

(iii) 0, √5

Solution:

Given, Sum of zeroes = $\alpha + \beta = 0$ Product of zeroes = $\alpha \beta = \sqrt{5}$ \therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

 $x^2 - (\alpha + \beta)x + \alpha\beta = 0$

x²–(0)x +√5= 0

Thus, $x^2 + \sqrt{5}$ is the quadratic polynomial.

(iv) 1, 1

Solution:

Given, Sum of zeroes = $\alpha+\beta = 1$ Product of zeroes = $\alpha \beta = 1$

: If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

 $x^2-(\alpha+\beta)x+\alpha\beta=0$

 $x^2 - x + 1 = 0$

Thus , x^2-x+1 is the quadratic polynomial.

(v) -1/4, 1/4

Solution:

Given, Sum of zeroes = $\alpha+\beta$ = -1/4 Product of zeroes = $\alpha \beta$ = 1/4

: If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

 $x^2-(\alpha+\beta)x+\alpha\beta=0$

 x^{2} -(-1/4)x +(1/4) = 0

 $4x^2 + x + 1 = 0$

Thus, $4x^2 + x + 1$ is the quadratic polynomial.

(vi) 4, 1

Solution:

Given, Sum of zeroes = $\alpha+\beta = 4$ Product of zeroes = $\alpha\beta = 1$

 \therefore If α and β are zeroes of any quadratic polynomial, then the quadratic polynomial equation can be written directly as:-

 $x^2-(\alpha+\beta)x+\alpha\beta=0$

 $x^2 - 4x + 1 = 0$

Thus, x^2 –4x+1 is the quadratic polynomial.

Exercise 2.3

Page: 36

1. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following: (i) $p(x) = x^3-3x^2+5x-3$, $g(x) = x^2-2$

Solution:

Given, Dividend = $p(x) = x^3-3x^2+5x-3$ Divisor = $g(x) = x^2-2$

Therefore, upon division we get, Quotient = x-3Remainder = 7x-9

(ii) $p(x) = x^4 - 3x^2 + 4x + 5$, $g(x) = x^2 + 1 - x$

Solution:

Given, Dividend = $p(x) = x^4 - 3x^2 + 4x + 5$ Divisor = $g(x) = x^2 + 1-x$

Therefore, upon division we get, Quotient = $x^2 + x-3$ Remainder = 8

(iii) $p(x) = x^4-5x+6$, $g(x) = 2-x^2$ Solution: Given,

Dividend =
$$p(x) = x^4 - 5x + 6 = x^4 + 0x^2 - 5x + 6$$

Divisor = $g(x) = 2 - x^2 = -x^2 + 2$

$$-x^2 + 2 \qquad 7x^4 + 0x^3 + 0x^2 - 5x + 6$$

$$-x^4 + 0x^3 - 2x^2$$

$$2x^2 - 5x + 6$$

$$-x^2 + 0x - 4$$

$$-5x + 10$$

Therefore, upon division we get, Quotient = $-x^2-2$

Remainder = -5x + 10

2. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

(i) t²-3, 2t⁴+3t³-2t²-9t-12 Solutions: Given,

First polynomial = t^2 -3 Second polynomial = $2t^4$ + $3t^3$ - $2t^2$ -9t-12

As we can see, the remainder is left as 0. Therefore, we say that, t^2 -3 is a factor of $2t^2$ +3t+4.

$(ii)x^2+3x+1, 3x^4+5x^3-7x^2+2x+2$

Solutions:

Given,

First polynomial = x^2+3x+1 Second polynomial = $3x^4+5x^3-7x^2+2x+2$

	$3x^2$	-4x	+2		
$x^2 + 3x + 1$	$3x^4$	$+5x^3$	$-7x^{2}$	+2x +	2
	$3x^4$	$+9x^{3}$	$+3x^{2}$	2	
		$-4x^{3}$	$-10x^{2}$	$x^{2} + 2x$	+2
		() <u></u> ()			
		$-4x^{3}$	$-12x^{4}$	$^{2} -4x$	
			$2x^2$	$^{2} + 6x$	+2
			-		
	2		$2x^2$	$^{2} + 6x$	+2
					0

As we can see, the remainder is left as 0. Therefore, we say that, $x^2 + 3x + 1$ is a factor of $3x^4+5x^3-7x^2+2x+2$.

(iii) x^3-3x+1 , $x^5-4x^3+x^2+3x+1$

First polynomial = x^3-3x+1

Solutions:

Given,

Second polynomial = $x^{5}-4x^{3}+x^{2}+3x+1$ $x^{3} - 3x + 1$ $x^{5} + 0x^{4} - 4x^{3} + x^{2} + 3x + 1$ $x^{5} + 0x^{4} - 3x^{3} + x^{2}$ $-x^{3} + 0x^{2} + 3x + 1$ - $-x^{3} + 0x^{2} + 3x - 1$ $-x^{3} + 0x^{2} + 3x - 1$ $-x^{3} + 0x^{2} + 3x - 1$

As we can see, the remainder is not equal to 0. Therefore, we say that, x^3-3x+1 is not a factor of $x^5-4x^3+x^2+3x+1$.

3. Obtain all other zeroes of $3x^4+6x^3-2x^2-10x-5$, if two of its zeroes are $\sqrt{(5/3)}$ and $\sqrt{(5/3)}$.

Solutions:

Since this is a polynomial equation of degree 4, hence there will be total 4 roots.

 $\sqrt{(5/3)}$ and - $\sqrt{(5/3)}$ are zeroes of polynomial f(x).

: $(x - \sqrt{(5/3)}) (x + \sqrt{(5/3)} = x^2 - (5/3) = 0$

 $(3x^2-5)=0$, is a factor of given polynomial f(x).

Now, when we will divide f(x) by $(3x^2-5)$ the quotient obtained will also be a factor of f(x) and the remainder will be 0.

 $x^{2} + 2x + 1$

 $3x^2-5$ $3x^4+6x^3-2x^2-10x-5$ $-5x^2$ 3x⁴ (-) (+) $+6x^{3} + 3x^{2} - 10x - 5$ $-6x^3$ - 10x (+) (-) $3x^2$ -5 $3x^2$ - 5 (+) (-) 0

Therefore, $3x^4 + 6x^3 - 2x^2 - 10x - 5 = (3x^2 - 5)(x^2 + 2x + 1)$

Now, on further factorizing (x^2+2x+1) we get,

 $x^{2}+2x+1 = x^{2}+x+x+1 = 0$

x(x+1)+1(x+1) = 0

(x+1)(x+1) = 0

So, its zeroes are given by: x = -1 and x = -1.

Therefore, all four zeroes of given polynomial equation are:

√(5/3),- √(5/3) , −1 and −1.

Hence, is the answer.

4. On dividing x^3-3x^2+x+2 by a polynomial g(x), the quotient and remainder were x-2 and -2x+4, respectively. Find g(x).

Solutions:

Given, Dividend, $p(x) = x^3 \cdot 3x^2 + x + 2$ Quotient = x-2 Remainder = -2x+4We have to find the value of Divisor, g(x) = ?

As we know, Dividend = Divisor \times Quotient + Remainder

 $\begin{array}{l} \therefore x^{3}-3x^{2}+x+2=g(x)\times(x-2)+(-2x+4)\\ x^{3}-3x^{2}+x+2-(-2x+4)=g(x)\times(x-2)\\ \text{Therefore, }g(x)\times(x-2)=x^{3}-3x^{2}+x+2\\ \text{Now, for finding }g(x) \text{ we will divide }x^{3}-3x^{2}+x+2 \text{ with }(x-2) \end{array}$

$$\begin{array}{r} x^{2} - x + 1 \\ x - 2 \\ \hline x^{3} - 3x^{2} + 3x - 2 \\ x^{3} - 2x^{2} \\ (-) & (+) \\ \hline & - x^{2} + 3x - 2 \\ - x^{2} + 2x \\ (+) & (-) \\ \hline & x - 2 \\ (+) & (-) \\ \hline & x - 2 \\ (-) & (+) \\ \hline & 0 \\ \end{array}$$

Therefore, $g(x) = (x^2-x+1)$

5. Give examples of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and
(i) deg p(x) = deg q(x)
(ii) deg q(x) = deg r(x)
(iii) deg r(x) = 0

Solutions:

According to the division algorithm, dividend p(x) and divisor g(x) are two polynomials, where $g(x) \neq 0$. Then we

can find the value of quotient q(x) and remainder r(x), with the help of below given formula;

 $Dividend = Divisor \times Quotient + Remainder$

: $p(x) = g(x) \times q(x) + r(x)$ Where r(x) = 0 or degree of r(x) < degree of g(x). Now let us proof the three given cases as per division algorithm by taking examples for each.

(i) deg p(x) = deg q(x)

Degree of dividend is equal to degree of quotient, only when the divisor is a constant term. Let us take an example, $3x^2+3x+3$ is a polynomial to be divided by 3. So, $(3x^2+3x+3)/3 = x^2+x+1 = q(x)$ Thus, you can see, the degree of quotient is equal to the degree of dividend. Hence, division algorithm is satisfied here.

(ii) deg q(x) = deg r(x)

Let us take an example , $p(x)=x^2+x$ is a polynomial to be divided by g(x)=x. So, $(x^2+x)/x = x+1 = q(x)$ Also, remainder, r(x) = 0Thus, you can see, the degree of quotient is equal to the degree of remainder. Hence, division algorithm is satisfied here.

(iii) deg r(x) = 0

The degree of remainder is 0 only when the remainder left after division algorithm is constant. Let us take an example, $p(x) = x^2+1$ is a polynomial to be divided by g(x)=x. So, $(x^2+1)/x=x=q(x)$ And r(x)=1Clearly, the degree of remainder here is 0. Hence, division algorithm is satisfied here.

Exercise 2.4

Page: 36

1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i) $2x^3+x^2-5x+2$; -1/2, 1, -2

Solution: Given, $p(x) = 2x^3 + x^2 - 5x + 2$

And zeroes for p(x) are = 1/2, 1, -2

 $\therefore p(1/2) = 2(1/2)^3 + (1/2)^2 - 5(1/2) + 2 = (1/4) + (1/4) - (5/2) + 2 = 0$

 $p(1) = 2(1)^3 + (1)^2 - 5(1) + 2 = 0$

 $p(-2) = 2(-2)^3 + (-2)^2 - 5(-2) + 2 = 0$

Hence, proved 1/2, 1, -2 are the zeroes of $2x^3+x^2-5x+2$.

Now, comparing the given polynomial with general expression, we get;

$$\therefore$$
 ax³+bx²+cx+d = 2x³+x²-5x+2

a=2, b=1, c= -5 and d = 2

As we know, if α , β , γ are the zeroes of the cubic polynomial ax^3+bx^2+cx+d , then;

 $\alpha + \beta + \gamma = -b/a$

 $\alpha\beta{+}\beta\gamma{+}\gamma\alpha=c/a$

$$\alpha \beta \gamma = -d/a.$$

Therefore, putting the values of zeroes of the polynomial,

$$\alpha + \beta + \gamma = \frac{1}{2} + 1 + (-2) = -\frac{1}{2} = -\frac{b}{a}$$

 $\alpha\beta+\beta\gamma+\gamma\alpha = (1/2\times1)+(1\times-2)+(-2\times1/2) = -5/2 = c/a$

$$\alpha \beta \gamma = \frac{1}{2} \times 1 \times (-2) = -\frac{2}{2} = -\frac{d}{a}$$

Hence, the relationship between the zeroes and the coefficients are satisfied.

(ii) $x^{3}-4x^{2}+5x-2$; 2, 1, 1

Solution: Given, $p(x) = x^{3}-4x^{2}+5x-2$

And zeroes for p(x) are 2,1,1.

 \therefore p(2)= 2³-4(2)²+5(2)-2 = 0

 $p(1) = 1^{3} \cdot (4 \times 1^{2}) + (5 \times 1) \cdot 2 = 0$ Hence proved, 2, 1, 1 are the zeroes of $x^{3} \cdot 4x^{2} + 5x \cdot 2$

Now, comparing the given polynomial with general expression, we get;

 \therefore ax³+bx²+cx+d = x³-4x²+5x-2 a = 1, b = -4, c = 5 and d = -2

As we know, if α , β , γ are the zeroes of the cubic polynomial ax^3+bx^2+cx+d , then;

$$\label{eq:alpha} \begin{split} &\alpha+\beta+\gamma=-b/a\\ &\alpha\beta+\beta\gamma+\gamma\alpha=c/a\\ &\alpha\;\beta\;\gamma=-d/a. \end{split}$$

Therefore, putting the values of zeroes of the polynomial,

 $\alpha + \beta + \gamma = 2 + 1 + 1 = 4 = -(-4)/1 = -b/a$ $\alpha\beta + \beta\gamma + \gamma\alpha = 2 \times 1 + 1 \times 1 + 1 \times 2 = 5 = 5/1 = c/a$

 $\alpha\beta\gamma = 2 \times 1 \times 1 = 2 = -(-2)/1 = -d/a$

Hence, the relationship between the zeroes and the coefficients are satisfied.

2. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

Solution:

Let us consider the cubic polynomial is ax^3+bx^2+cx+d and the values of the zeroes of the polynomials be α , β , γ .

As per the given question,

 $\alpha + \beta + \gamma = -b/a = 2/1$ $\alpha\beta + \beta\gamma + \gamma\alpha = c/a = -7/1$

 $\alpha \beta \gamma = -d/a = -14/1$

Thus, from above three expressions we get the values of coefficient of polynomial. a = 1, b = -2, c = -7, d = 14

Hence, the cubic polynomial is $x^3-2x^2-7x+14$

3. If the zeroes of the polynomial x^3-3x^2+x+1 are a - b, a, a + b, find a and b.

Solution:

We are given with the polynomial here, $p(x) = x^3 \cdot 3x^2 + x + 1$

And zeroes are given as a - b, a, a + b

Now, comparing the given polynomial with general expression, we get;

 \therefore px³+qx²+rx+s = x³-3x²+x+1

p = 1, q = -3, r = 1 and s = 1

Sum of zeroes = a - b + a + a + b

$$-q/p = 3a$$

Putting the values q and p.

-(-3)/1 = 3a

a=1

Thus, the zeroes are 1-b, 1, 1+b.

Now, product of zeroes = 1(1-b)(1+b)

 $-s/p = 1-b^2$

 $-1/1 = 1-b^2$

 $b^2 = 1 + 1 = 2$

 $b = \sqrt{2}$

Hence,1- $\sqrt{2}$, 1 ,1+ $\sqrt{2}$ are the zeroes of x^3 - $3x^2$ +x+1.

4. If two zeroes of the polynomial $x^4-6x^3-26x^2+138x-35$ are $2 \pm \sqrt{3}$, find other zeroes.

Solution:

Since this is a polynomial equation of degree 4, hence there will be total 4 roots.

Let $f(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$

Since $2 + \sqrt{3}$ and $2 - \sqrt{3}$ are zeroes of given polynomial f(x).

 $\therefore [x - (2 + \sqrt{3})] [x - (2 - \sqrt{3})] = 0$

 $(x-2-\sqrt{3})(x-2+\sqrt{3}) = 0$

On multiplying the above equation we get,

 x^2-4x+1 , this is a factor of a given polynomial f(x).

Now, if we will divide f(x) by g(x), the quotient will also be a factor of f(x) and the remainder will be 0.

$$x^{2}-2x-35$$

$$x^{2}-4x+1$$

$$x^{4}-6x^{3}-26x^{2}+138x-35$$

$$x^{4}-4x^{3} + x^{2}$$
(·) (·) (·)
$$-2x^{3}-27x^{2}+138x-35$$

$$-2x^{3} + 8x^{2}-2x$$
(+) (·) (+)
$$-35x^{2}+140x-35$$

$$-35x^{2}+140x-35$$
(+) (·) (+)
$$0$$

So, $x^4-6x^3-26x^2+138x-35 = (x^2-4x+1)(x^2-2x-35)$

Now, on further factorizing $(x^2-2x-35)$ we get, $x^2-(7-5)x -35 = x^2-7x+5x+35 = 0$ x(x -7)+5(x-7) = 0 (x+5)(x-7) = 0So, its zeroes are given by:

x = -5 and x = 7.

Therefore, all four zeroes of given polynomial equation are: $2+\sqrt{3}$, $2-\sqrt{3}$, -5 and 7.