

U'S NCERT Solution for Class 10 Maths Chapter 8 – Introduction to Trigonometry

Exercise 8.3

Page: 189

1. Evaluate : (i) sin 18°/cos 72° (ii) tan 26°/cot 64° (iii) cos 48° – sin 42° (iv) cosec 31° – sec 59°

Solution:

(i) $\sin 18^{\circ}/\cos 72^{\circ}$ To simplify this, convert the sin function into cos function We know that, 18° is written as $90^{\circ} - 18^{\circ}$, which is equal to the cos 72° . $= \sin (90^{\circ} - 18^{\circ}) / \cos 72^{\circ}$ Substitute the value, to simplify this equation $= \cos 72^{\circ} / \cos 72^{\circ} = 1$ (ii) $\tan 26^{\circ}/\cot 64^{\circ}$ To simplify this, convert the tan function into cot function We know that, 26° is written as $90^{\circ} - 36^{\circ}$, which is equal to the cot 64° . $= \tan (90^{\circ} - 36^{\circ})/\cot 64^{\circ}$ Substitute the value, to simplify this equation $= \cot 64^{\circ}/\cot 64^{\circ} = 1$ (iii) $\cos 48^\circ - \sin 42^\circ$ To simplify this, convert the cos function into sin function We know that, 48° is written as $90^{\circ} - 42^{\circ}$, which is equal to the sin 42° . $= \cos (90^{\circ} - 42^{\circ}) - \sin 42^{\circ}$ Substitute the value, to simplify this equation $= \sin 42^{\circ} - \sin 42^{\circ} = 0$ (iv) cosec 31° - sec 59° To simplify this, convert the cosec function into sec function We know that, 31° is written as 90° - 59° , which is equal to the sec 59° $= \csc (90^{\circ} - 59^{\circ}) - \sec 59^{\circ}$

Substitute the value, to simplify this equation = $\sec 59^\circ - \sec 59^\circ = 0$

2. Show that:
(i) tan 48° tan 23° tan 42° tan 67° = 1
(ii) cos 38° cos 52° - sin 38° sin 52° = 0
Solution:

(i) tan 48° tan 23° tan 42° tan 67° Simplify the given problem by converting some of the tan functions to the cot functions

https://byjus.com

We know that, $\tan 48^\circ = \tan (90^\circ - 42^\circ) = \cot 42^\circ$ $\tan 23^\circ = \tan (90^\circ - 67^\circ) = \cot 67^\circ$ $= \tan (90^\circ - 42^\circ) \tan (90^\circ - 67^\circ) \tan 42^\circ \tan 67^\circ$ Substitute the values $= \cot 42^\circ \cot 67^\circ \tan 42^\circ \tan 67^\circ$ $= (\cot 42^\circ \tan 42^\circ) (\cot 67^\circ \tan 67^\circ) = 1 \times 1 = 1$

(ii) $\cos 38^{\circ} \cos 52^{\circ} - \sin 38^{\circ} \sin 52^{\circ}$ Simplify the given problem by converting some of the cos functions to the sin functions We know that, $\cos 38^{\circ} = \cos (90^{\circ} - 52^{\circ}) = \sin 52^{\circ}$ $\cos 52^{\circ} = \cos (90^{\circ} - 38^{\circ}) = \sin 38^{\circ}$ $= \cos (90^{\circ} - 52^{\circ}) \cos (90^{\circ} - 38^{\circ}) - \sin 38^{\circ} \sin 52^{\circ}$ Substitute the values $= \sin 52^{\circ} \sin 38^{\circ} - \sin 38^{\circ} \sin 52^{\circ} = 0$

3. If $\tan 2A = \cot (A - 18^\circ)$, where 2A is an acute angle, find the value of A.

Solution:

tan 2A = cot (A- 18°) We know that tan 2A = cot (90° - 2A) Substitute the above equation in the given problem \Rightarrow cot (90° - 2A) = cot (A - 18°) Now, equate the angles, \Rightarrow 90° - 2A = A- 18° \Rightarrow 108° = 3A A = 108° / 3 Therefore, the value of A = 36°

4. If $\tan A = \cot B$, prove that $A + B = 90^{\circ}$.

Solution:

tan A = cot B We know that cot B = tan (90° - B) To prove A + B = 90°, substitute the above equation in the given problem tan A = tan (90° - B) A = 90° - B A + B = 90° Hence Proved.

5. If sec $4A = cosec (A - 20^\circ)$, where 4A is an acute angle, find the value of A. Solution:

sec $4A = cosec (A - 20^{\circ})$ We know that sec $4A = cosec (90^{\circ} - 4A)$ To find the value of A, substitute the above equation in the given problem $cosec (90^{\circ} - 4A) = cosec (A - 20^{\circ})$

https://byjus.com

Now, equate the angles $90^{\circ} - 4A = A - 20^{\circ}$ $110^{\circ} = 5A$ $A = 110^{\circ}/5 = 22^{\circ}$ Therefore, the value of $A = 22^{\circ}$

6. If A, B and C are interior angles of a triangle ABC, then show that sin (B+C/2) = cos A/2 Solution:

We know that, for a given triangle, sum of all the interior angles of a triangle is equal to 180° A + B + C = 180° (1) To find the value of (B+ C)/2, simplify the equation (1) \Rightarrow B + C = 180° - A \Rightarrow (B+C)/2 = $(180^{\circ}$ -A)/2 \Rightarrow (B+C)/2 = $(90^{\circ}$ -A/2) Now, multiply both sides by sin functions, we get \Rightarrow sin (B+C)/2 = sin (90^{\circ}-A/2) Since sin (90°-A/2) = cos A/2, the above equation is equal to sin (B+C)/2 = cos A/2 Hence proved.

7. Express sin $67^{\circ} + \cos 75^{\circ}$ in terms of trigonometric ratios of angles between 0° and 45° . Solution:

Given: $\sin 67^\circ + \cos 75^\circ$ In term of sin as cos function and cos as sin function, it can be written as follows $\sin 67^\circ = \sin (90^\circ - 23^\circ)$ $\cos 75^\circ = \cos (90^\circ - 15^\circ)$ $= \sin (90^\circ - 23^\circ) + \cos (90^\circ - 15^\circ)$ Now, simplify the above equation $= \cos 23^\circ + \sin 15^\circ$ Therefore, $\sin 67^\circ + \cos 75^\circ$ is also expressed as $\cos 23^\circ + \sin 15^\circ$

