QUESTION PAPER CODE 430/2/1

EXPECTED ANSWER/VALUE POINTS

SECTION A

Question numbers 1 to 10 are multiple choice questions of 1 mark each. Select the correct option.

1. HCF of two numbers is 27 and their LCM is 162 . If one of the number is 54 , then the other number is
(a) 36
(b) 35
(c) 9
(d) 81

Sol. (d) 81
2. The cumulative frequency table is useful in determining
(a) Mean
(b) Median
(c) Mode
(d) All of these

Sol. (b) Median
3. In Fig. 1, O is the centre of circle. $P Q$ is a chord and $P T$ is tangent at P which makes an angle of 50° with $\mathrm{PQ} . \angle \mathrm{POQ}$ is
(a) 130°
(b) 90°
(c) 100°
(d) 75°

Fig. 1
Sol. (c) 100°
4. $2 \sqrt{3}$ is
(a) an integer
(b) a rational number
(c) an irrational number
(d) a whole number

Sol. (c) an irrational no.
5. Two coins are tossed simultaneously. The probability of getting at most one head is
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(c) $\frac{2}{3}$
(d) $\frac{3}{4}$

Sol. (d) $\frac{3}{4}$
6. If one zero of the polynomial $\left(3 x^{2}+8 x+k\right)$ is the reciprocal of the other, then value of k is
(a) 3
(b) -3
(c) $\frac{1}{3}$
(d) $-\frac{1}{3}$

Sol. (a) 3
7. The decimal expansion of $\frac{23}{2^{5} \times 5^{2}}$ will terminate after how many places of decimal?
(a) 2
(b) 4
(c) 5
(d) 1

Sol. (c) 5
8. The maximum number of zeroes a cubic polynomial can have, is
(a) 1
(b) 4
(c) 2
(d) 3

Sol. (d) 3
9. The distance of the point $(-12,5)$ from the origin is
(a) 12
(b) 5
(c) 13
(d) 169

Sol. (c) 13
10. If the centre of a circle is $(3,5)$ and end points of a diameter are $(4,7)$ and $(2, y)$, then the value of y is
(a) 3
(b) -3
(c) 7
(d) 4

Sol. (a) 3
Question numbers 11 to 15 , fill in the blanks:
11. The area of triangle formed with the origin and the points $(4,0)$ and $(0,6)$ is \qquad .

Sol. 12 sq units
OR
The co-ordinate of the point dividing the line segment joining the points $A(1,3)$ and $B(4,6)$ in the ratio $2: 1$ is \qquad .

Sol. (3, 5)
12. Value of the roots of the quadratic equation, $x^{2}-x-6=0$ are \qquad .

Sol. 3 and -2
13. If $\sin \theta=\frac{5}{13}$, then the value of $\tan \theta$ is \qquad .
Sol. $\tan \theta=\frac{5}{12}$
14. The value of $\left(\tan ^{2} 60^{\circ}+\sin ^{2} 45^{\circ}\right)$ is \qquad .

Sol. $\frac{7}{2}$ or 3.5
15. The corresponding sides of two similar triangles are in the ratio $3: 4$, then the ratios of the area of triangles is \qquad .

Sol. 9: 16
Question numbers 16 to 20, answer the following :
16. Find the value of $\left(\cos 48^{\circ}-\sin 42^{\circ}\right)$.

Sol. $\cos 48^{\circ}-\cos \left(90-42^{\circ}\right)$
$\cos 48^{\circ}-\cos 48^{\circ}=0$

OR

Evaluate: $\left(\tan 23^{\circ}\right) \times\left(\tan 67^{\circ}\right)$
Sol. $\tan \left(90-67^{\circ}\right) \times \tan 67^{\circ}$
$\cot 67^{\circ} \times \tan 67^{\circ}$
$=1$
17. In figure- $2 \overparen{P Q}$ and $\overparen{A B}$ are two arcs of concentric circles of radii 7 cm and 3.5 cm resp., with centre O. If $\angle P O Q=30^{\circ}$, then find the area of shaded region.

Fig.-2
Sol. Area of shaded region $=\frac{22}{7} \times \frac{30^{\circ}}{360^{\circ}}\left(7^{2}-(3.5)^{2}\right) \quad \frac{1}{2}$
\qquad
18. A card is drawn at random from a well shuffled deck of 52 playing cards. What is the probability of getting a black king?
Sol. $\quad P($ Black king $)=\frac{2}{52}$ or $\frac{1}{26}$
19. A ladder 25 m long just reaches the top of a building 24 m high from the ground. What is the distance of the foot of ladder from the base of the building?

Sol. \quad Distance $=\sqrt{(25)^{2}-(24)^{2}}=7 \mathrm{~m}$
20. If $3 k-2,4 k-6$ and $k+2$ are three consecutive terms of A.P., then find the value of k.

Sol. $(4 \mathrm{k}-6)-(3 \mathrm{k}-2)=(\mathrm{k}+2)-(4 \mathrm{k}-6)$

SECTION B

Question numbers 21 to 26 carry 2 marks each.
21. In a lottery, there are 10 prizes and 25 blanks. What is the probability of getting a prize?

Sol. Total $=10+25=35, \quad \mathrm{P}($ getting prize $)=\frac{10}{35}$ or $\frac{2}{7}$
22. In a family of three children, find the probability of having at least two boys.

Sol. Total outcomes $=8\{\mathrm{BBB}, \mathrm{BBG}, \mathrm{BGB}, \mathrm{BGG}, \mathrm{GBB}, \mathrm{GBG}, \mathrm{GGB}, \mathrm{GGG}\}$
$\mathrm{P}($ atleast 2 boys $)=\frac{4}{8}$ or $\frac{1}{2}$

OR

Two dice are tossed simultaneously. Find the probability of getting
(i) an even number on both dice.
(ii) the sum of two numbers more than 9.

Total outcomes $=36$
$\mathrm{P}($ even no. on both side $)=\frac{9}{36}$ or $\frac{1}{4}$
$\mathrm{P}($ sum $>9)=\frac{6}{36}$ or $\frac{1}{6}$
23. Two concentric circles are of radii 5 cm and 3 cm . Find the length of the chord of larger circle which touches the smaller circle.

Sol.

In $\triangle \mathrm{OCB}$	Fig.
$\mathrm{BC}=\sqrt{5^{2}-3^{2}}=4 \mathrm{~cm}$	1
$\mathrm{AB}=2 \times \mathrm{BC}=8 \mathrm{~cm}$	$\frac{1}{2}$

24. Prove that: $\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=2 \sec ^{2} \theta$

Sol. L.H.S $=\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=\frac{1-\sin \theta+1+\sin \theta}{(1+\sin \theta)(1-\sin \theta)}$

$$
\begin{aligned}
& =\frac{2}{1-\sin ^{2} \theta}=\frac{2}{\cos ^{2} \theta} \\
& =2 \sec ^{2} \theta
\end{aligned}
$$

OR
Prove that: $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos ^{2} \theta-\sin ^{2} \theta$
Sol. L.H.S $=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta+\sin ^{2} \theta}$

$$
=\cos ^{2} \theta-\sin ^{2} \theta
$$

25. The wheel of a motorcycle is of radius 35 cm . How many revolutions are required to travel a distance of $\mathbf{1 1} \mathbf{~ m}$?

Sol. Distance in 1 revolution $=2 \times \frac{22}{7} \times 35=220 \mathrm{~cm}$
No. of revolution $=\frac{1100}{220}=5$
26. Divide $\left(2 x^{2}-x+3\right)$ by $(2-x)$ and write the quotient and the remainder.

Sol.

$\left.\begin{array}{l}\text { Quotient }=-2 \mathrm{x}-3 \\ \mathrm{R}=9\end{array}\right]$

SECTION C

Question numbers 27 to 34 carry 3 marks each.
27. If α and β are the zeroes of the polynomial $f(x)=5 x^{2}-7 x+1$, then find the value of $\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)$.

Sol. $\alpha+\beta=\frac{7}{5}$ and $\alpha \beta=\frac{1}{5}$

$$
\begin{aligned}
\frac{\alpha}{\beta}+\frac{\beta}{\alpha} & =\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta} \\
& =\frac{\left(\frac{7}{5}\right)^{2}-2 \times \frac{1}{5}}{\frac{1}{5}} \\
& =\frac{39}{5} \text { or } 7.8
\end{aligned}
$$

28. Draw a line segment of length 7 cm and divide it in the ratio $2: 3$.

Sol. Correct construction

OR

Draw a circle of radius 4 cm and construct the pair of tangents to the circle from an external point, which is at a distance of 7 cm from its centre.

Sol. Correct construction
29. The minute hand of a clock is 21 cm long. Calculate the area swept by it and the distance travelled by its tip in $\mathbf{2 0}$ minutes.

Sol. Angle in $20 \mathrm{~min}=120^{\circ}$

Area $=\frac{22}{7} \times \frac{120^{\circ}}{360^{\circ}} \times(21)^{2}=462 \mathrm{~cm}^{2}$
Distance $=\frac{120^{\circ}}{360^{\circ}} \times 2 \pi \mathrm{r}=44 \mathrm{~cm}$
30. If $x=3 \sin \theta+4 \cos \theta$ and $y=3 \cos \theta-4 \sin \theta$ then prove that $x^{2}+y^{2}=25$.

Sol. $\quad \mathrm{x}^{2}=9 \sin ^{2} \theta+16 \cos ^{2} \theta+24 \sin \theta \cos \theta$
$y^{2}=9 \cos ^{2} \theta+16 \sin ^{2} \theta-24 \sin \theta \cos \theta$
$x^{2}+y^{2}=25$

OR

If $\sin \theta+\sin ^{2} \theta=1$; then prove that $\cos ^{2} \theta+\cos ^{4} \theta=1$.
Sol. $\quad \sin \theta=1-\sin ^{2} \theta=\cos ^{2} \theta$

$$
\begin{aligned}
\text { L.H.S } & =\cos ^{2} \theta+\left(\cos ^{2} \theta\right)^{2}=\cos ^{2} \theta+\sin ^{2} \theta \\
& =1=\text { R.H.S }
\end{aligned}
$$

31. Prove that $\sqrt{3}$ is an irrational number.

Sol. Let $\sqrt{3}$ be a rational number

$$
\begin{array}{ll}
\sqrt{3}=\frac{\mathrm{p}}{\mathrm{q}} \quad \mathrm{p}, \mathrm{q} \text { are coprime, } \mathrm{q} \neq 0 \\
3 \mathrm{q}^{2}=\mathrm{p}^{2} \Rightarrow 3\left|\mathrm{p}^{2} \Rightarrow 3\right| \mathrm{p} \quad \text { Let } \mathrm{p}=3 \mathrm{~m} \\
3 \mathrm{q}^{2}=9 \mathrm{~m}^{2} \Rightarrow \mathrm{q}^{2}=3 \mathrm{~m}^{2} \Rightarrow 3\left|\mathrm{q}^{2} \Rightarrow 3\right| \mathrm{q}
\end{array}
$$

$\therefore \quad 3$ is common factor of p and q
Contraction to our assumption
Hence $\sqrt{3}$ is irrational No.

OR

Using Euclid's algorithm, find the HCF of 272 and 1032.
Sol. $\quad 1032=272 \times 3+216$

$$
\begin{array}{lr}
272=216 \times 1+56 & \frac{1}{2}+\frac{1}{2} \\
216=56 \times 3+48 & \\
56=48 \times 1+8 & \frac{1}{2}+\frac{1}{2} \\
48=8 \times 6+0 & \operatorname{HCF}(1032,272)=8
\end{array} \frac{1}{2}+\frac{1}{2}
$$

32. In a rectangle $\mathbf{A B C D}, \mathbf{P}$ is any interior point. Then prove that $\mathbf{P A}^{\mathbf{2}}+\mathbf{P C}^{\mathbf{2}}=\mathbf{P B}^{\mathbf{2}}+\mathbf{P D}^{\mathbf{2}}$.

Sol.

Correct figure \& Construction $\frac{1}{2}+\frac{1}{2}$

In rt $\left.\triangle \mathrm{APX} \quad \mathrm{AP}^{2}=\mathrm{AX}^{2}+\mathrm{PX}^{2}\right]$
In rt $\left.\Delta \mathrm{PCY} \quad \mathrm{PC}^{2}=\mathrm{PY}^{2}+\mathrm{YC}^{2}\right]$

In rt $\left.\triangle \mathrm{PXD} \quad \mathrm{PD}^{2}=\mathrm{DX}^{2}+\mathrm{PX}^{2}\right]$
$\mathrm{PA}^{2}+\mathrm{PC}^{2}=\mathrm{AX}^{2}+\mathrm{PX}^{2}+\mathrm{PY}^{2}+\mathrm{YC}^{2}$
$=B Y^{2}+P Y^{2}+\mathrm{PX}^{2}+\mathrm{XD}^{2}$
$=\mathrm{PB}^{2}+\mathrm{PD}^{2}$

34. Solve graphically:
$2 x-3 y+13=0 ; 3 x-2 y+12=0$
Sol. Correct graph of $2 \mathrm{x}-3 \mathrm{y}+13=0,3 \mathrm{x}-2 \mathrm{y}+12=0$
Solution $\mathrm{x}=-2, \quad \mathrm{y}=3$

SECTION D

Question numbers 35 to 40 carry 4 marks each.
35. The product of two consecutive positive integers is 306 . Find the integers.

Sol. Let two consecutive integers $\mathrm{x}, \mathrm{x}+1$

$$
\begin{aligned}
& x(x+1)=306 \Rightarrow x^{2}+x-306=0 \\
\Rightarrow & (x+18)(x-17)=0 \\
\Rightarrow & x=-18,(\text { Rejected }), 17
\end{aligned}
$$

\therefore Two consecutive integers 17,18
36. The $17^{\text {th }}$ term of an A.P. is 5 more than twice its 8 th term. If 11 th term of A.P. is 43 ; then find its nth term.

Sol. $\quad \mathrm{a}_{17}=2 \mathrm{a}_{8}+5 \Rightarrow \mathrm{a}+16 \mathrm{~d}=2(\mathrm{a}+7 \mathrm{~d})+5$
$\Rightarrow 2 \mathrm{~d}-\mathrm{a}=15$

$$
\begin{equation*}
a_{11}=43 \Rightarrow a+10 d=43 \tag{1}
\end{equation*}
$$

Solving (1) \& (2) $\mathrm{a}=3 \quad \mathrm{~d}=4$

$$
a_{n}=4 n-1
$$

OR

How many terms of A.P. 3, 5, 7, 9, ... must be taken to get the sum 120 ?
Sol. $\quad \mathrm{a}=3, \mathrm{~d}=3, \quad \mathrm{Sn}=120$

$$
\begin{aligned}
& \frac{\mathrm{n}}{2}[2 \times 3+(\mathrm{n}-1) 2]=120 \Rightarrow \mathrm{n}^{2}+2 \mathrm{n}-120=0 \\
& (\mathrm{n}+12)(\mathrm{n}-10)=0 \\
& \mathrm{n}=-12, \mathrm{n}=10
\end{aligned}
$$

Reject $\mathrm{n}=-12, \mathrm{n}=10$
37. A person standing on the bank of a river observes that the angle of elevation of the top of a tree standing on opposite bank is $\mathbf{6 0}$. When he moves 30 m away from the bank, he finds the angle of elevation to be 30°. Find the height of the tree and width of the river. [Take $\sqrt{3}=$ 1.732]

Sol.

Correct figure
In right $\triangle \mathrm{ABC}$

$$
\begin{align*}
& \tan 60^{\circ}=\frac{h}{x} \\
& \sqrt{3} x=h \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\text { In rt } \triangle \mathrm{ABD} \tan 30^{\circ}=\frac{\mathrm{h}}{30+\mathrm{x}} \Rightarrow \frac{30+\mathrm{x}}{\sqrt{3}}=\mathrm{h} \tag{2}
\end{equation*}
$$

Solving (1) \& (2) $x=15 m, h=15 \sqrt{3} m=25.98 \mathrm{~m}$
38. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

Sol. Correct Fig., given, to prove, construction
Correct proof given, to prove, construction,

OR

Prove that the length of tangents drawn from an external point to a circle are equal.

Correct Fig., given, to prove, construction
Correct proof given, to prove, construction,
39. From a solid cylinder whose height is 15 cm and the diameter is 16 cm , a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of remaining solid. (Give your answer in terms of π).

Sol.
Correct figure $\frac{1}{2}$

$$
\begin{align*}
& 1=17 \\
& \mathrm{r}=8 \mathrm{~cm} \tag{1}
\end{align*}
$$

Total S.A. of remaining solid $=$ C.S.A of cylinder + C.S.A of cone + Area of base
$=2 \pi \mathrm{rh}+\pi \mathrm{rl}+\pi \mathrm{r}^{2}=\pi \mathrm{r}(2 \mathrm{~h}+1+\mathrm{r})$
$=\pi \times 8(2 \times 15+17+18)=8 \pi(55)=440 \pi \mathrm{~cm}^{2}$

OR
The height of a cone is 10 cm . The cone is divided into two parts using a plane parallel to its base at the middle of its height. Find the ratio of the volumes of the two parts.

For correct fig 1
$\triangle \mathrm{OAB} \sim \Delta \mathrm{OCD}$

$$
\begin{align*}
& \frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{AB}}{\mathrm{CD}} \Rightarrow \frac{5}{10}=\frac{\mathrm{r}}{\mathrm{R}} \\
& \Rightarrow \mathrm{R}=2 \mathrm{r} \tag{1}
\end{align*}
$$

$$
\frac{\mathrm{V} \text { of cone }}{\mathrm{V} \text { of frustum }}=\frac{\frac{1}{3} \pi \mathrm{r}^{2} 5}{\frac{1}{3} \pi\left(\mathrm{r}^{2}+\mathrm{R}^{2}+\mathrm{rR}\right) 5}=\frac{\mathrm{r}^{2}}{7 \mathrm{r}^{2}}=\frac{1}{7}
$$

or $7: 1$
40. The mode of the following frequency distribution is 36 . Find the missing frequency (f).

Classes	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$
Frequency	$\mathbf{8}$	10	\mathbf{f}	16	12	6	7

Sol. Modal class $30-40$

$$
\begin{aligned}
& \mathrm{l}=30 \quad \mathrm{f}_{0}=\mathrm{f} \quad \mathrm{f}_{1}=16 \quad \mathrm{f}_{2}=12 \quad \mathrm{~h}=10 \\
& \text { Mode }=1+\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}} \times \mathrm{h} \\
& 36=30+\frac{16-\mathrm{f}}{32-\mathrm{f}-12} \times 10 \\
& \mathrm{f}=10
\end{aligned}
$$

QUESTION PAPER CODE 430/2/2

EXPECTED ANSWER/VALUE POINTS
 SECTION A

Question numbers 1 to 10 are multiple choice questions of 1 mark each. Select the correct option.

1. If the centre of a circle is $(3,5)$ and end points of a diameter are $(4,7)$ and $(2, y)$, then the value of y is
(a) 3
(b) -3
(c) 7
(d) 4

Sol. (a) 3
2. The decimal expansion of $\frac{23}{2^{5} \times 5^{2}}$ will terminate after how many places of decimal?
(a) 2
(b) 4
(c) 5
(d) 1

Sol. (c) 5
3. Two coins are tossed simultaneously. The probability of getting at most one head is
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(c) $\frac{2}{3}$
(d) $\frac{3}{4}$

Sol. (d) $\frac{3}{4}$
4. The cumulative frequency table is useful in determining
(a) Mean
(b) Median
(c) Mode
(d) All of these

Sol. (b) Median
5. HCF of two numbers is 27 and their LCM is 162 . If one of the number is 54 , then the other number is
(a) 36
(b) 35
(c) 9
(d) 81

Sol. (d) 81
6. $2 \sqrt{3}$ is
(a) an integer
(b) a rational number
(c) an irrational number
(d) a whole number

Sol. (c) an irrational no.
7. The maximum number of zeroes a cubic polynomial can have, is
(a) 1
(b) 4
(c) 2
(d) 3

Sol. (d) 3
8. If α and β are the zeroes of the polynomial $2 x^{2}-13 x+6$, then $\alpha+\beta$ is equal to
(a) -3
(b) 3
(c) $\frac{13}{2}$
(d) $-\frac{13}{2}$

Sol.
(c) $\frac{13}{2}$
9. The mid-point of the line-segment $A B$ is $P(0,4)$. If the coordinates of B are $(-2,3)$ then the coordinates of A are
(a) $(2,5)$
(b) $(-2,-5)$
(c) $(2,9)$
(d) $(-2,11)$

Sol. (a) $(2,5)$
10. In Fig. $-1 \mathrm{AP}, \mathrm{AQ}$ and BC are tangents to the circle with centre O . If $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=\mathbf{6} \mathbf{~ c m}$ and $B C=4 \mathrm{~cm}$, then the length of $A P$ (in cm) is

Fig. 1
(a) 15
(b) 10
(c) 9
(d) 7.5

Sol. (d) 7.5
Question numbers 11 to 15 , fill in the blanks:
11. The corresponding sides of two similar triangles are in the ratio $3: 4$, then the ratios of the area of triangles is \qquad -

Sol. 9: 16
12. The area of triangle formed with the origin and the points $(4,0)$ and $(0,6)$ is \qquad .

Sol. $\quad 12$ sq units
OR
The co-ordinate of the point dividing the line segment joining the points $A(1,3)$ and $B(4,6)$ in the ratio $2: 1$ is \qquad .

Sol. $(3,5)$
13. The value of $\left(\tan ^{2} 60^{\circ}+\sin ^{2} 45^{\circ}\right)$ is \qquad .

Sol. $\frac{7}{2}$ or 3.5
14. Value of the roots of the quadratic equation, $x^{2}-x-6=0$ are \qquad .

Sol. 3 and -2
15. The value of $\left(\sin 43^{\circ} \cdot \cos 47^{\circ}+\sin 47^{\circ} \cos 43^{\circ}\right)$ is \qquad .

Sol. 1
Question numbers 16 to 20, answer the following :
16. In figure-2 $\overparen{P Q}$ and $\overparen{A B}$ are two arcs of concentric circles of radii 7 cm and 3.5 cm resp., with centre O. If $\angle P O Q=30^{\circ}$, then find the area of shaded region.

Fig.-2
Sol. Area of shaded region $=\frac{22}{7} \times \frac{30^{\circ}}{360^{\circ}}\left(7^{2}-(3.5)^{2}\right)$
17. If $3 k-2,4 k-6$ and $k+2$ are three consecutive terms of A.P., then find the value of \mathbf{k}.

Sol. $(4 \mathrm{k}-6)-(3 \mathrm{k}-2)=(\mathrm{k}+2)-(4 \mathrm{k}-6)$
$\Rightarrow \mathrm{k}=3$
18. Find the value of $\left(\cos 48^{\circ}-\sin 42^{\circ}\right)$.

Sol. $\cos 48^{\circ}-\cos \left(90^{\circ}-42^{\circ}\right)$
$\cos 48^{\circ}-\cos 48^{\circ}=0$
OR
Evaluate: $\left(\tan 23^{\circ}\right) \times\left(\tan 67^{\circ}\right)$
Sol. $\cos \left(90^{\circ}-67^{\circ}\right) \times \tan 67^{\circ}$
$=\cot 67^{\circ} \times \tan 67^{\circ}=1$
19. In a $\triangle P Q R$, S and T are points on the sides $P Q$ and $P R$ respectively, such that $S T \| Q R$. If $P T$ $=2 \mathrm{~cm}$ and $T R=4 \mathrm{~cm}$, find the ratio of the areas of $\triangle P S T$ and $\triangle P Q R$.

Sol. $\frac{\operatorname{ar}(\triangle \mathrm{PST})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{PT}}{\mathrm{PR}}\right)^{2}$

$$
=\left(\frac{2}{2+4}\right)^{2}=\frac{1}{9}
$$

\therefore ratio is $1: 9$
20. Two different coins are tossed simultaneously. What is the probability of getting at least one head?

Sol. Total outcomes $=4\{$ HH, HT, TH, TT $\}$
$P($ atleast one head $)=\frac{3}{4}$

SECTION B

Question numbers 21 to 26 carry 2 marks each.
21. Prove that: $\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=2 \sec ^{2} \theta$

Sol. L.H.S $=\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta}=\frac{1-\sin \theta+1+\sin \theta}{(1+\sin \theta)(1-\sin \theta)}$

$$
\begin{aligned}
& =\frac{2}{1-\sin ^{2} \theta}=\frac{2}{\cos ^{2} \theta} \\
& =2 \sec ^{2} \theta
\end{aligned}
$$

OR

Prove that: $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\cos ^{2} \theta-\sin ^{2} \theta$
Sol. L.H.S $=\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=\frac{1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}=\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta+\sin ^{2} \theta}$

$$
=\cos ^{2} \theta-\sin ^{2} \theta
$$

22. Divide $\left(2 x^{2}-x+3\right)$ by $(2-x)$ and write the quotient and the remainder.

Sol.

$$
\begin{array}{r}
- x + 2 \longdiv { 2 \not x ^ { 2 } - x + 3 } \\
2 \not x^{2}-4 x \\
-\quad+ \\
\hline 3 x+3 \\
3 x-6 \\
-\quad+ \\
\hline
\end{array}
$$

$$
\left.\begin{array}{l}
\text { Quotient }=-2 x-3 \\
\mathrm{R}=9
\end{array}\right]
$$

23. In a family of three children, find the probability of having at least two boys.

Sol. Total outcomes $=8\{\mathrm{BBB}, \mathrm{BBG}, \mathrm{BGB}, \mathrm{BGG}, \mathrm{GBB}, \mathrm{GBG}, \mathrm{GGB}, \mathrm{GGG}\}$
$\mathrm{P}($ atleast 2 boys $)=\frac{4}{8}$ or $\frac{1}{2}$
OR
Two dice are tossed simultaneously. Find the probability of getting
(i) an even number on both dice.
(ii) the sum of two numbers more than 9.

Sol. Total outcomes $=36$ cases
$\mathrm{P}($ even no. on both side $)=\frac{9}{36}$ or $\frac{1}{4}$
$\mathrm{P}($ sum $>9)=\frac{6}{36}$ or $\frac{1}{6}$
24. In a lottery, there are 10 prizes and 25 blanks. What is the probability of getting a prize?

Sol. Total $=10+25=35, \quad \mathrm{P}($ getting prize $)=\frac{10}{35}$ or $\frac{2}{7}$
25. A circle is inscribed in a $\triangle A B C$ touching $A B, B C$ and $A C$ at P, Q and R respectively. If $A B=$ $10 \mathrm{~cm}, A R=7 \mathrm{~cm}$ and $C R=5 \mathrm{~cm}$, then find the length of $B C$.

Sol.

$\mathrm{AP}=\mathrm{AR}=7 \mathrm{~cm}$
$\mathrm{PB}=10-7=3 \mathrm{~cm}$
$\mathrm{BQ}=\mathrm{BP}=3 \mathrm{~cm}$
$\mathrm{QC}=\mathrm{RC}=5 \mathrm{~cm}$
$\mathrm{BC}=5+3=8 \mathrm{~cm}$
26. The length of the minute hand of clock is 14 cm . Find the area swept by the minute hand in $\mathbf{1 5}$ minutes.

Sol. Angle swept in 15 minutes $=90^{\circ}$

$$
\begin{aligned}
\text { Area } & =\frac{22}{7} \times 14 \times 14 \times \frac{90^{\circ}}{360^{\circ}} \\
& =154 \mathrm{~cm}^{2}
\end{aligned}
$$

SECTION C

Question numbers 27 to 34 carry 3 marks each.
27. Solve graphically:
$2 x-3 y+13=0 ; 3 x-2 y+12=0$
Sol. Correct graph of $2 x-3 y+13=0,3 x-2 y+12=0$
Solution $\mathrm{x}=-2, \quad \mathrm{y}=3$
28. Prove that $\sqrt{3}$ is an irrational number.

Sol. Let $\sqrt{3}$ be a rational number

$$
\begin{array}{ll}
& \sqrt{3}=\frac{\mathrm{p}}{\mathrm{q}} \quad \mathrm{p}, \mathrm{q} \text { are coprime, } \mathrm{q} \neq 0 \\
& 3 \mathrm{q}^{2}=\mathrm{p}^{2} \Rightarrow 3\left|\mathrm{p}^{2} \Rightarrow 3\right| \mathrm{p} \quad \text { Let } \mathrm{p}=3 \mathrm{~m} \\
& 3 \mathrm{q}^{2}=9 \mathrm{~m}^{2} \Rightarrow \mathrm{q}^{2}=3 \mathrm{~m}^{2} \Rightarrow 3\left|\mathrm{q}^{2} \Rightarrow 3\right| \mathrm{q} \\
\therefore & 3 \text { is common factor of } \mathrm{p} \text { and } \mathrm{q} \\
& \text { Contraction to our assumption } \\
& \text { Hence } \sqrt{3} \text { is irrational No. }
\end{array}
$$

OR

Using Euclid's algorithm, find the HCF of 272 and 1032.
Sol. $\quad 1032=272 \times 3+216$

$$
\begin{aligned}
& 272=216 \times 1+56 \\
& 216=56 \times 3+48 \\
& 56=48 \times 1+8 \\
& 48=8 \times 6+0
\end{aligned}
$$

$$
\frac{1}{2}+\frac{1}{2}
$$

$$
\frac{1}{2}+\frac{1}{2}
$$

$$
\operatorname{HCF}(1032,272)=8
$$

29. If $x=3 \sin \theta+4 \cos \theta$ and $y=3 \cos \theta-4 \sin \theta$ then prove that $x^{2}+y^{2}=25$.

Sol. $x^{2}=9 \sin ^{2} \theta+16 \cos ^{2} \theta+24 \sin \theta \cos \theta$
$y^{2}=9 \cos ^{2} \theta+16 \sin ^{2} \theta-24 \sin \theta \cos \theta$
$x^{2}+y^{2}=25$
OR
If $\sin \theta+\sin ^{2} \theta=1$; then prove that $\cos ^{2} \theta+\cos ^{4} \theta=1$.
Sol. $\sin \theta=1-\sin ^{2} \theta=\cos ^{2} \theta$
L.H.S $=\cos ^{2} \theta+\left(\cos ^{2} \theta\right)^{2}=\cos ^{2} \theta+\sin ^{2} \theta$
$=1=$ R.H.S
30. In a classroom, 4 friends are seated at the points A, B, C and D as shown in Fig. 3. Champa and Chameli walk into the class and after observing for a few minutes Champa asks Chameli, "Don't you think ABCD is a square?" Chameli disagrees. Using distance formula, find which of them is correct.

Fig. 3

Sol. $\quad \mathrm{A}=(3,4), \mathrm{B}=(6,7), \mathrm{C}=(9,4), \mathrm{D}=(6,1)$

$$
\mathrm{AB}=3 \sqrt{2}, \quad \mathrm{BC}=3 \sqrt{2}, \quad \mathrm{CD}=3 \sqrt{2}, \quad \mathrm{DA}=3 \sqrt{2}
$$

$$
\mathrm{AC}=6 \text { unit } \quad \mathrm{BD}=6 \text { unit }
$$

$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ and $\mathrm{AC}=\mathrm{BD}$
ABCD is a square
\therefore Champa is correct
31. Draw a line segment of length 7 cm and divide it in the ratio $2: 3$.

Sol. Correct construction

OR

Draw a circle of radius 4 cm and construct the pair of tangents to the circle from an external point, which is at a distance of 7 cm from its centre.

Sol. Correct construction
32. If α and β are the zeroes of the polynomial $f(x)=5 x^{2}-7 x+1$, then find the value of $\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)$.

Sol. $\alpha+\beta=\frac{7}{5}$ and $\alpha \beta=\frac{1}{5}$

$$
\begin{array}{rlr}
\frac{\alpha}{\beta}+\frac{\beta}{\alpha} & =\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}=\frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha \beta} \tag{1}\\
& =\frac{\left(\frac{7}{5}\right)^{2}-2 \times \frac{1}{5}}{\frac{1}{5}} & \frac{1}{2} \\
& =\frac{39}{5} \text { or } 7.8 & \frac{1}{2}
\end{array}
$$

33. A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. If the total height of the toy is 15.5 cm , find the total surface area of the toy.

Sol.

Height of cone $=15.5-3.5=12 \mathrm{~cm}$

Slant height, $1=\sqrt{(12)^{2}+(3.5)^{2}}=12.5 \mathrm{~cm}$
TSA of toy $=\pi(3.5) \times 12+2 \pi(3.5)^{2}$
$=66.5 \pi$ or $209 \mathrm{~cm}^{2}$
34. In the Fig.-4, two circles touch each other at a point C. Prove that the common tangent to the circles at C, bisects the common tangent at P and Q.

Fig. 4
Sol. $\quad \mathrm{PR}=\mathrm{RC}$
$P Q=R C$
[Tangents from external point]

From (1) and (2), $\mathrm{PR}=\mathrm{PQ}$

SECTION D

Question numbers 35 to 40 carry 4 marks each.
35. A person standing on the bank of a river observes that the angle of elevation of the top of a tree standing on opposite bank is 60°. When he moves 30 m away from the bank, he finds the angle of elevation to be 30°. Find the height of the tree and width of the river. [Take $\sqrt{3}=$ 1.732]

Sol.

Correct figure
In right $\triangle \mathrm{ABC}$

$$
\begin{align*}
& \tan 60^{\circ}=\frac{h}{x} \\
& \sqrt{3} x=h \tag{1}
\end{align*}
$$

In rt $\triangle A B D \tan 30^{\circ}=\frac{h}{30+x} \Rightarrow \frac{30+x}{\sqrt{3}}=h$
Solving (1) \& (2) $\mathrm{x}=15 \mathrm{~m}, \mathrm{~h}=15 \sqrt{3} \mathrm{~m}=25.98 \mathrm{~m}$
36. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

Sol. Correct Fig., given, to prove, construction
Correct proof given, to prove, construction,

OR

Prove that the length of tangents drawn from an external point to a circle are equal.

Sol. Correct Fig., given, to prove, construction
Correct proof given, to prove, construction,
37. From a solid cylinder whose height is 15 cm and the diameter is 16 cm , a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of remaining solid. (Give your answer in terms of π).

Sol.
Correct figure $\frac{1}{2}$

$$
\begin{aligned}
& 1=17 \\
& \mathrm{r}=8 \mathrm{~cm}
\end{aligned}
$$

Total S.A. of remaining solid $=$ C.S.A of cylinder + C.S.A of cone + Area of base

$$
\begin{equation*}
=2 \pi \mathrm{rh}+\pi \mathrm{rl}+\pi \mathrm{r}^{2}=\pi \mathrm{r}(2 \mathrm{~h}+1+\mathrm{r}) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=\pi \times 8(2 \times 15+17+8)=8 \pi(55)=440 \pi \mathrm{~cm}^{2} \tag{1}
\end{equation*}
$$

OR
The height of a cone is 10 cm . The cone is divided into two parts using a plane parallel to its base at the middle of its height. Find the ratio of the volumes of the two parts.
Sol.
For correct fig
$\triangle \mathrm{OAB} \sim \Delta \mathrm{OCD}$

$$
\begin{aligned}
& \frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{AB}}{\mathrm{CD}} \Rightarrow \frac{5}{10}=\frac{\mathrm{r}}{\mathrm{R}} \\
& \Rightarrow \mathrm{R}=2 \mathrm{r}
\end{aligned}
$$

$$
\frac{\mathrm{V} \text { of cone }}{\mathrm{V} \text { of frustum }}=\frac{\frac{1}{3} \pi \mathrm{r}^{2} 5}{\frac{1}{3} \pi\left(\mathrm{r}^{2}+\mathrm{R}^{2}+\mathrm{rR}\right)}=\frac{\mathrm{r}^{2}}{7 \mathrm{r}^{2}}=\frac{1}{7}
$$

or $7: 1$
38. The $17^{\text {th }}$ term of an A.P. is 5 more than twice its 8 th term. If 11 th term of A.P. is $\mathbf{4 3}$; then find its nth term.

Sol. $\quad \mathrm{a}_{17}=2 \mathrm{a}_{8}+5 \Rightarrow \mathrm{a}+16 \mathrm{~d}=2(\mathrm{a}+7 \mathrm{~d})+5$
$\Rightarrow 2 \mathrm{~d}-\mathrm{a}=15$

$$
\begin{equation*}
a_{11}=43 \Rightarrow a+10 d=43 \tag{1}
\end{equation*}
$$

Solving (1) \& (2) $a=3 \quad d=4$

$$
a_{n}=4 n-1
$$

OR

How many terms of A.P. 3, 5, 7, 9, ... must be taken to get the sum 120 ?
Sol. $\quad \mathrm{a}=3, \mathrm{~d}=3, \quad \mathrm{Sn}=120$

$$
\begin{aligned}
& \frac{\mathrm{n}}{2}[2 \times 3+(\mathrm{n}-1) 2]=120 \Rightarrow \mathrm{n}^{2}+2 \mathrm{n}-120=0 \\
& (\mathrm{n}+12)(\mathrm{n}-10)=0 \\
& \mathrm{n}=-12, \mathrm{n}=10
\end{aligned}
$$

Reject $\mathrm{n}=-12, \mathrm{n}=10$
39. Find the median for the given frequency distribution:

Classes	$40-45$	$45-50$	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$
Frequency	2	3	8	6	6	3	2

Sol. Class Frequency cf

$40-50$	2	2

45-50 3
55-55 8
$\begin{array}{lll}55-60 & 6 & 19\end{array}$
$\begin{array}{lll}60-65 & 6 & 25\end{array}$
$\begin{array}{lll}65-70 & 3 & 28\end{array}$
$\begin{array}{lll}70-75 & 2 & 30\end{array}$
$\begin{array}{lr}\text { Correct table } & 1 \\ \text { Median class }=55-60 & \frac{1}{2}\end{array}$

$$
\begin{aligned}
\text { Median } & =55+\frac{\left(\frac{30}{2}-13\right)}{6} \times 5 \\
& =56 \frac{2}{3} \text { or } 56.67
\end{aligned}
$$

40. If the price of a book is reduced by ₹ 5 , a person can buy 4 more books for $₹ \mathbf{6 0 0}$. Find the original price of the book.

Sol. Let original price of the book be ₹x
A.T.Q.

$$
\begin{array}{lc}
\frac{600}{x-5}-\frac{600}{x}=4 & 1 \frac{1}{2} \\
x^{2}-5 x-750=0 & 1 \\
(x-30)(x+25)=0 & 1 \\
x=30 \text { or }-25 &
\end{array}
$$

Price is always positive, so original price of book is is ₹ 30

