CBSE Class 10 Maths Question Paper Solution 2020 Set 430/2/1

QUESTION PAPER CODE 430/2/1

EXPECTED ANSWER/VALUE POINTS

SECTION A

Question numbers 1 to 10 are multiple choice questions of 1 mark each. Select the correct option.

- 1. HCF of two numbers is 27 and their LCM is 162. If one of the number is 54, then the other number is
 - (a) 36

(b) 35

(c) 9

(d) 81

Sol. (d) 81

1

- 2. The cumulative frequency table is useful in determining
 - (a) Mean

- (b) Median
- (c) Mode
- (d) All of these

- **Sol.** (b) Median
 - 3. In Fig. 1, O is the centre of circle. PQ is a chord and PT is tangent at P which makes an angle of 50° with PQ. \angle POQ is
 - (a) 130°

- (b) 90°
- (c) 100°
- (d) 75°

Fig. 1

Sol. (c) 100°

1

1

- 4. $2\sqrt{3}$ is
 - (a) an integer

(b) a rational number

(c) an irrational number

(d) a whole number

Sol. (c) an irrational no.

- 1
- 5. Two coins are tossed simultaneously. The probability of getting at most one head is
 - (a) $\frac{1}{4}$

(b) $\frac{1}{2}$

(c) $\frac{2}{3}$

(d) $\frac{3}{4}$

Sol. (d) $\frac{3}{4}$

6.	6. If one zero of the polynomial $(3x^2 + 8x + k)$ is the reciprocal of the other, then value					
	(a) 3	(b) -3	(c) $\frac{1}{3}$	(d) $-\frac{1}{3}$		
Sol.	(a) 3				1	
7.	The decimal ex	pansion of $\frac{23}{2^5 \times 5^2}$ will te	rminate after how ma	ny places of decimal?		
	(a) 2	(b) 4	(c) 5	(d) 1		
Sol.	(c) 5				1	
8.	The maximum	number of zeroes a cubic	polynomial can have,	is		
	(a) 1	(b) 4	(c) 2	(d) 3		
Sol.	(d) 3				1	
9.	The distance of	f the point (-12, 5) from t	he origin is			
	(a) 12	(b) 5	(c) 13	(d) 169		
Sol.	(c) 13				1	
10.	If the centre of of y is	a circle is (3, 5) and end po	oints of a diameter are	(4, 7) and (2, y), then the va	lue	
	(a) 3	(b) -3	(c) 7	(d) 4		
Sol.	(a) 3				1	
	Question numb	oers 11 to 15, fill in the bla	anks:			
11.	The area of tri	angle formed with the ori	gin and the points (4,	0) and (0, 6) is		
Sol.	12 sq units				1	
			OR			
	The co-ordinat the ratio 2:1		line segment joining t	he points $A(1, 3)$ and $B(4, 6)$) in	
Sol.	(3, 5)				1	
12.	Value of the ro	ots of the quadratic equa	tion, $x^2 - x - 6 = 0$ and	re		
Sol.	3 and -2				1	
13.	If $\sin \theta = \frac{5}{13}$,	then the value of tan θ is	·			
Sol.	$\tan \theta = \frac{5}{12}$				1	

14. The value of $(\tan^2 60^\circ + \sin^2 45^\circ)$ is _____.

Sol. $\frac{7}{2}$ or 3.5

15. The corresponding sides of two similar triangles are in the ratio 3 : 4, then the ratios of the area of triangles is _____.

Sol. 9:16

Question numbers 16 to 20, answer the following:

16. Find the value of (cos 48° – sin 42°).

Sol.
$$\cos 48^{\circ} - \cos (90 - 42^{\circ})$$

 $\cos 48^{\circ} - \cos 48^{\circ} = 0$

$$\frac{1}{2}$$

OR

Evaluate: $(\tan 23^\circ) \times (\tan 67^\circ)$

Sol.
$$\tan (90 - 67^{\circ}) \times \tan 67^{\circ}$$

 $\cot 67^{\circ} \times \tan 67^{\circ}$
 $= 1$

17. In figure-2 \overrightarrow{PQ} and \overrightarrow{AB} are two arcs of concentric circles of radii 7 cm and 3.5 cm resp., with centre O. If $\angle POQ = 30^{\circ}$, then find the area of shaded region.

Fig.-2

Sol. Area of shaded region =
$$\frac{22}{7} \times \frac{30^{\circ}}{360^{\circ}} (7^2 - (3.5)^2)$$

= 9.625 cm²

18. A card is drawn at random from a well shuffled deck of 52 playing cards. What is the probability of getting a black king?

Sol. P(Black king) =
$$\frac{2}{52}$$
 or $\frac{1}{26}$

19. A ladder 25 m long just reaches the top of a building 24 m high from the ground. What is the distance of the foot of ladder from the base of the building?

Sol. Distance =
$$\sqrt{(25)^2 - (24)^2} = 7 \text{ m}$$
 $\frac{1}{2} + \frac{1}{2}$

20. If 3k - 2, 4k - 6 and k + 2 are three consecutive terms of A.P., then find the value of k.

Sol.
$$(4k-6) - (3k-2) = (k+2) - (4k-6)$$
 $\frac{1}{2}$

$$\Rightarrow k = 3$$

SECTION B

Question numbers 21 to 26 carry 2 marks each.

21. In a lottery, there are 10 prizes and 25 blanks. What is the probability of getting a prize?

Sol. Total =
$$10 + 25 = 35$$
, P(getting prize) = $\frac{10}{35}$ or $\frac{2}{7}$

22. In a family of three children, find the probability of having at least two boys.

$$P(\text{at least 2 boys}) = \frac{4}{8} \text{ or } \frac{1}{2}$$

OR

Two dice are tossed simultaneously. Find the probability of getting

- (i) an even number on both dice.
- (ii) the sum of two numbers more than 9.

P(even no. on both side) =
$$\frac{9}{36}$$
 or $\frac{1}{4}$

$$P(sum > 9) = \frac{6}{36} \text{ or } \frac{1}{6}$$

23. Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of larger circle which touches the smaller circle.

Sol.

In
$$\triangle OCB$$
 Fig. $\frac{1}{2}$

$$BC = \sqrt{5^2 - 3^2} = 4 \text{ cm}$$

$$AB = 2 \times BC = 8 \text{ cm}$$

24. Prove that:
$$\frac{1}{1+\sin\theta} + \frac{1}{1-\sin\theta} = 2 \sec^2\theta$$

Sol. L.H.S =
$$\frac{1}{1 + \sin \theta} + \frac{1}{1 - \sin \theta} = \frac{1 - \sin \theta + 1 + \sin \theta}{(1 + \sin \theta)(1 - \sin \theta)}$$

$$=\frac{2}{1-\sin^2\theta}=\frac{2}{\cos^2\theta}$$

$$= 2\sec^2 \theta$$
 $\frac{1}{2}$

OR

Prove that:
$$\frac{1-\tan^2\theta}{1+\tan^2\theta} = \cos^2\theta - \sin^2\theta$$

Sol.
$$L.H.S = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{1 - \frac{\sin^2 \theta}{\cos^2 \theta}}{1 + \frac{\sin^2 \theta}{\cos^2 \theta}} = \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta}$$

$$= \cos^2 \theta - \sin^2 \theta$$

25. The wheel of a motorcycle is of radius 35 cm. How many revolutions are required to travel a distance of 11 m?

Sol. Distance in 1 revolution =
$$2 \times \frac{22}{7} \times 35 = 220 \text{ cm}$$

No. of revolution =
$$\frac{1100}{220}$$
 = 5

26. Divide $(2x^2 - x + 3)$ by (2 - x) and write the quotient and the remainder.

Sol.
$$-x + 2) 2x^{2} - x + 3$$

$$2x^{2} - 4x$$

$$- +$$

$$3x + 3$$

$$3x - 6$$

$$- +$$

$$9$$

Quotient =
$$-2x-3$$

R = 9

430/2/1

SECTION C

Question numbers 27 to 34 carry 3 marks each.

- 27. If α and β are the zeroes of the polynomial $f(x) = 5x^2 7x + 1$, then find the value of $\left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)$.
- **Sol.** $\alpha + \beta = \frac{7}{5}$ and $\alpha\beta = \frac{1}{5}$ $\frac{1}{2} + \frac{1}{2}$

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$

$$= \frac{\left(\frac{7}{5}\right)^2 - 2 \times \frac{1}{5}}{\frac{1}{5}}$$

$$=\frac{39}{5}$$
 or 7.8

- 28. Draw a line segment of length 7 cm and divide it in the ratio 2:3.
- **Sol.** Correct construction

OR

Draw a circle of radius 4 cm and construct the pair of tangents to the circle from an external point, which is at a distance of 7 cm from its centre.

- Sol. Correct construction
 - 29. The minute hand of a clock is 21 cm long. Calculate the area swept by it and the distance travelled by its tip in 20 minutes.

Sol. Angle in 20 min =
$$120^{\circ}$$

Area =
$$\frac{22}{7} \times \frac{120^{\circ}}{360^{\circ}} \times (21)^2 = 462 \text{ cm}^2$$
 1+ $\frac{1}{2}$

Distance =
$$\frac{120^{\circ}}{360^{\circ}} \times 2\pi r = 44 \text{ cm}$$

30. If $x = 3 \sin \theta + 4 \cos \theta$ and $y = 3 \cos \theta - 4 \sin \theta$ then prove that $x^2 + y^2 = 25$.

Sol.
$$x^2 = 9 \sin^2 \theta + 16 \cos^2 \theta + 24 \sin \theta \cos \theta$$

$$y^2 = 9\cos^2\theta + 16\sin^2\theta - 24\sin\theta\cos\theta$$

$$x^2 + y^2 = 25$$

OR

If $\sin \theta + \sin^2 \theta = 1$; then prove that $\cos^2 \theta + \cos^4 \theta = 1$.

Sol.
$$\sin \theta = 1 - \sin^2 \theta = \cos^2 \theta$$

L.H.S =
$$\cos^2 \theta + (\cos^2 \theta)^2 = \cos^2 \theta + \sin^2 \theta$$

= 1 = R.H.S

31. Prove that $\sqrt{3}$ is an irrational number.

Sol. Let $\sqrt{3}$ be a rational number

$$\sqrt{3} = \frac{p}{q}$$
 p, q are coprime, $q \neq 0$ $\frac{1}{2}$

$$3q^2 = p^2 \Rightarrow 3 \mid p^2 \Rightarrow 3 \mid p$$
 Let $p = 3$ m

$$3q^2 = 9m^2 \Rightarrow q^2 = 3m^2 \Rightarrow 3 \mid q^2 \Rightarrow 3 \mid q$$

1

:. 3 is common factor of p and q

Hence $\sqrt{3}$ is irrational No.

OR

Using Euclid's algorithm, find the HCF of 272 and 1032.

Sol.
$$1032 = 272 \times 3 + 216$$

$$272 = 216 \times 1 + 56$$

$$\frac{1}{2} + \frac{1}{2}$$

$$216 = 56 \times 3 + 48$$

$$\frac{1}{2} + \frac{1}{2}$$

$$48 = 8 \times 6 + 0$$
 HCF(1032, 272) = 8 $\frac{1}{2} + \frac{1}{2}$

32. In a rectangle ABCD, P is any interior point. Then prove that $PA^2 + PC^2 = PB^2 + PD^2$.

Sol.

Correct figure & Construction
$$\frac{1}{2} + \frac{1}{2}$$

In rt
$$\triangle APX$$
 $AP^2 = AX^2 + PX^2$
In rt $\triangle PCY$ $PC^2 = PY^2 + YC^2$

In rt
$$\triangle PBY$$
 $PB^2 = PY^2 + BY^2$
In rt $\triangle PXD$ $PD^2 = DX^2 + PX^2$ $\frac{1}{2}$

$$PA^{2} + PC^{2} = AX^{2} + PX^{2} + PY^{2} + YC^{2}$$

$$= BY^{2} + PY^{2} + PX^{2} + XD^{2}$$

$$= PB^{2} + PD^{2}$$

1

1

33. In a classroom, 4 friends are seated at the points A, B, C and D as shown in Fig. 3. Champa and Chameli walk into the class and after observing for a few minutes Champa asks Chameli, "Don't you think ABCD is a square?" Chameli disagrees. Using distance formula, find which of them is correct.

Fig. 3

Sol.
$$A = (3, 4), B = (6, 7), C = (9, 4), D = (6, 1)$$

$$AB = 3\sqrt{2}, BC = 3\sqrt{2}, CD = 3\sqrt{2}, DA = 3\sqrt{2}$$

$$AC = 6 \text{ unit}$$
 $BD = 6 \text{ unit}$ $\frac{1}{2}$

$$AB = BC = CD = DA$$
 and $AC = BD$

ABCD is a square

$$\therefore$$
 Champa is correct $\frac{1}{2}$

34. Solve graphically:

$$2x - 3y + 13 = 0$$
; $3x - 2y + 12 = 0$

Sol. Correct graph of
$$2x - 3y + 13 = 0$$
, $3x - 2y + 12 = 0$

1+1

Solution
$$x = -2$$
, $y = 3$

1

1

SECTION D

Question numbers 35 to 40 carry 4 marks each.

- 35. The product of two consecutive positive integers is 306. Find the integers.
- **Sol.** Let two consecutive integers x, x + 1

$$x(x + 1) = 306 \Rightarrow x^2 + x - 306 = 0$$

$$\Rightarrow$$
 (x + 18) (x - 17) = 0

$$\Rightarrow$$
 x = -18, (Rejected), 17

- :. Two consecutive integers 17, 18
- 36. The 17th term of an A.P. is 5 more than twice its 8th term. If 11th term of A.P. is 43; then find its nth term.

Sol.
$$a_{17} = 2a_8 + 5 \Rightarrow a + 16d = 2(a + 7d) + 5$$

$$\Rightarrow$$
 2d - a = 15 ...(1)

$$a_{11} = 43 \Rightarrow a + 10d = 43$$
 ...(2)

Solving (1) & (2)
$$a = 3$$
 $d = 4$

$$a_n = 4n - 1$$

OR

How many terms of A.P. 3, 5, 7, 9, ... must be taken to get the sum 120?

Sol.
$$a = 3$$
, $d = 3$, $Sn = 120$

$$\frac{n}{2}[2\times 3 + (n-1)2] = 120 \implies n^2 + 2n - 120 = 0$$

$$(n + 12) (n - 10) = 0$$

$$n = -12, n = 10$$

Reject n = -12, n = 10

37. A person standing on the bank of a river observes that the angle of elevation of the top of a tree standing on opposite bank is 60° . When he moves 30 m away from the bank, he finds the angle of elevation to be 30° . Find the height of the tree and width of the river. [Take $\sqrt{3} = 1.732$]

Sol.

Correct figure 1

In right $\triangle ABC$

$$\tan 60^\circ = \frac{h}{x} \qquad \qquad \frac{1}{2}$$

$$\sqrt{3}x = h \qquad \dots(1)$$

In rt
$$\triangle ABD$$
 tan $30^{\circ} = \frac{h}{30 + x} \Rightarrow \frac{30 + x}{\sqrt{3}} = h$...(2) $\frac{1}{2} + \frac{1}{2}$

Solving (1) & (2)
$$x = 15m$$
, $h = 15\sqrt{3} m = 25.98 m$ $\frac{1}{2} + \frac{1}{2}$

38. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

Sol. Correct Fig., given, to prove, construction

 $4 \times \frac{1}{2} = 2$

Correct proof given, to prove, construction,

2

OR

Prove that the length of tangents drawn from an external point to a circle are equal.

Correct Fig., given, to prove, construction

 $4 \times \frac{1}{2} = 2$

Correct proof given, to prove, construction,

2

39. From a solid cylinder whose height is 15 cm and the diameter is 16 cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of remaining solid. (Give your answer in terms of π).

Sol.

Correct figure $\frac{1}{2}$

$$1 = 17$$

1

$$r = 8 \text{ cm}$$

 $\frac{1}{2}$

1

Total S.A. of remaining solid= C.S.A of cylinder + C.S.A of cone + Area of base

$$= 2\pi rh + \pi rl + \pi r^2 = \pi r(2h + 1 + r)$$

$$= \pi \times 8(2 \times 15 + 17 + 18) = 8\pi(55) = 440\pi \text{ cm}^2$$

OR

The height of a cone is 10 cm. The cone is divided into two parts using a plane parallel to its base at the middle of its height. Find the ratio of the volumes of the two parts.

 $\Delta OAB \sim \Delta OCD$

$$\frac{\text{OA}}{\text{OC}} = \frac{\text{AB}}{\text{CD}} \Rightarrow \frac{5}{10} = \frac{\text{r}}{\text{R}}$$

$$\Rightarrow$$
 R = 2r

For correct fig 1

1

1

2

1

$$\frac{\text{V of cone}}{\text{V of frustum}} = \frac{\frac{1}{3}\pi r^2 5}{\frac{1}{3}\pi (r^2 + R^2 + rR)5} = \frac{r^2}{7r^2} = \frac{1}{7}$$
1+1

or 7:1

40. The mode of the following frequency distribution is 36. Find the missing frequency (f).

Classes	0 – 10	10 – 20	20 – 30	30 – 40	40 – 50	50 - 60	60 – 70
Frequency	8	10	f	16	12	6	7

Sol. Modal class 30 - 40

$$1 = 30$$
 $f_0 = f$ $f_1 = 16$ $f_2 = 12$ $h = 10$

Mode = $1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times h$

$$36 = 30 + \frac{16 - f}{32 - f - 12} \times 10$$

f = 10

QUESTION PAPER CODE 430/2/2

EXPECTED ANSWER/VALUE POINTS

SECTION A

Question numbers 1 to 10 are multiple choice questions of 1 mark each. Select the correct option.

1.	If the centre of a circle is (3, 5) and end points of a diameter are (4, 7) and (2, y), then the value of y is						
	(a) 3	(b) -3	(c) 7	(d) 4			
Sol.	(a) 3						
2.	The decimal expansion of	of $\frac{23}{2^5 \times 5^2}$ will term	ninate after how man	y places of decimal?			
	(a) 2	(b) 4	(c) 5	(d) 1			
Sol.	(c) 5						
3.	Two coins are tossed sin	nultaneously. The p	orobability of getting	at most one head is			
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{2}{3}$	(d) $\frac{3}{4}$			
Sol.	(d) $\frac{3}{4}$						
4.	The cumulative frequence	cy table is useful in	determining				
	(a) Mean	(b) Median	(c) Mode	(d) All of these			
Sol.	(b) Median						
5.	HCF of two numbers is number is	27 and their LCM	is 162. If one of the	number is 54, then the other			
	(a) 36	(b) 35	(c) 9	(d) 81			
Sol.	(d) 81						
6.	$2\sqrt{3}$ is						
	(a) an integer		(b) a rational number				
	(c) an irrational number		(d) a whole num	ıber			
Sol	(c) an irrational no						

7.	The maximum number of zeroes a cubic polynomial can have, is							
	(a) 1	(b) 4	(c) 2	(d) 3				
Sol.	(d) 3				1			
8.	If α and β are th	e zeroes of the polynom	$x^2 - 13x + 6$, the	en $\alpha + \beta$ is equal to				
	(a) -3	(b) 3	(c) $\frac{13}{2}$	(d) $-\frac{13}{2}$				
Sol.	(c) $\frac{13}{2}$				1			
9.	The mid-point of toordinates of A are	the line-segment AB is Po	(0, 4). If the coordinat	es of B are (-2, 3) then t	the co-			
	(a) (2, 5)	(b) $(-2, -5)$	(c) (2, 9)	(d) (-2, 11)				
Sol.	(a) (2, 5)				1			
10.		and BC are tangents to hen the length of AP (in		O. If AB = 5 cm, AC =	= 6 cm			
		P Fig	io Q g. 1					
	(a) 15	(b) 10	(c) 9	(d) 7.5				
Sol.	(d) 7.5				1			
	Question numbers	s 11 to 15, fill in the blan	nks:					
11.	The corresponding of triangles is	g sides of two similar tria 	ngles are in the ratio 3	: 4, then the ratios of th	ne area			
Sol.	9:16				1			
12.	The area of triang	gle formed with the original	in and the points (4, () and (0, 6) is	_•			
Sol.	12 sq units				1			
		0	R					
	The co-ordinate of the ratio 2:1 is	f the point dividing the l	ine segment joining th	e points A(1, 3) and B(4	4, 6) in			
	the ratio 2. T is							
Sol.	(3, 5)				1			

13. The value of $(\tan^2 60^\circ + \sin^2 45^\circ)$ is _____.

Sol.
$$\frac{7}{2}$$
 or 3.5

14. Value of the roots of the quadratic equation, $x^2 - x - 6 = 0$ are ______.

15. The value of $(\sin 43^{\circ} \cdot \cos 47^{\circ} + \sin 47^{\circ} \cos 43^{\circ})$ is _____.

Question numbers 16 to 20, answer the following:

16. In figure-2 \overrightarrow{PQ} and \overrightarrow{AB} are two arcs of concentric circles of radii 7 cm and 3.5 cm resp., with centre O. If $\angle POQ = 30^{\circ}$, then find the area of shaded region.

Fig.-2

Sol. Area of shaded region =
$$\frac{22}{7} \times \frac{30^{\circ}}{360^{\circ}} (7^2 - (3.5)^2)$$

= 9.625 cm²

17. If 3k - 2, 4k - 6 and k + 2 are three consecutive terms of A.P., then find the value of k.

Sol.
$$(4k-6) - (3k-2) = (k+2) - (4k-6)$$

$$\Rightarrow k = 3$$

$$\frac{1}{2}$$

18. Find the value of $(\cos 48^{\circ} - \sin 42^{\circ})$.

Sol.
$$\cos 48^{\circ} - \cos (90^{\circ} - 42^{\circ})$$

 $\cos 48^{\circ} - \cos 48^{\circ} = 0$
 $\frac{1}{2}$

OR

Evaluate: $(\tan 23^\circ) \times (\tan 67^\circ)$

Sol.
$$\cos (90^{\circ} - 67^{\circ}) \times \tan 67^{\circ}$$

= $\cot 67^{\circ} \times \tan 67^{\circ} = 1$ $\frac{1}{2}$

19. In a $\triangle PQR$, S and T are points on the sides PQ and PR respectively, such that ST || QR. If PT = 2 cm and TR = 4 cm, find the ratio of the areas of $\triangle PST$ and $\triangle PQR$.

Sol.
$$\frac{\operatorname{ar}(\Delta \operatorname{PST})}{\operatorname{ar}(\Delta \operatorname{PQR})} = \left(\frac{\operatorname{PT}}{\operatorname{PR}}\right)^2$$

$$= \left(\frac{2}{2+4}\right)^2 = \frac{1}{9}$$

$$\therefore$$
 ratio is 1:9

20. Two different coins are tossed simultaneously. What is the probability of getting at least one head?

Sol. Total outcomes =
$$4 \{HH, HT, TH, TT\}$$

$$P(\text{at least one head}) = \frac{3}{4}$$

SECTION B

Question numbers 21 to 26 carry 2 marks each.

21. Prove that:
$$\frac{1}{1 + \sin \theta} + \frac{1}{1 - \sin \theta} = 2 \sec^2 \theta$$

Sol. L.H.S =
$$\frac{1}{1 + \sin \theta} + \frac{1}{1 - \sin \theta} = \frac{1 - \sin \theta + 1 + \sin \theta}{(1 + \sin \theta)(1 - \sin \theta)}$$

$$=\frac{2}{1-\sin^2\theta}=\frac{2}{\cos^2\theta}$$
 $\frac{1}{2}$

$$= 2\sec^2 \theta$$
 $\frac{1}{2}$

OR

Prove that:
$$\frac{1-\tan^2\theta}{1+\tan^2\theta} = \cos^2\theta - \sin^2\theta$$

Sol.
$$L.H.S = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \frac{1 - \frac{\sin^2 \theta}{\cos^2 \theta}}{1 + \frac{\sin^2 \theta}{\cos^2 \theta}} = \frac{\cos^2 \theta - \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta}$$

$$=\cos^2\theta-\sin^2\theta$$

Divide $(2x^2 - x + 3)$ by (2 - x) and write the quotient and the remainder. 22.

$$\begin{array}{c|c}
 & -2x - 3 \\
-x + 2 \overline{\smash)2x^2 - x + 3} \\
2x^2 - 4x \\
\underline{- + } \\
3x + 3 \\
3x - 6 \\
\underline{- + } \\
9
\end{array}$$

Sol.

23.

Quotient = -2x - 3R = 9

In a family of three children, find the probability of having at least two boys.

Sol. Total outcomes = 8 {BBB, BBG, BGB, BGG, GBB, GBG, GGB, GGG}

$$P(\text{at least 2 boys}) = \frac{4}{8} \text{ or } \frac{1}{2}$$

1

1

1

1

OR

Two dice are tossed simultaneously. Find the probability of getting

- (i) an even number on both dice.
- (ii) the sum of two numbers more than 9.

Sol. Total outcomes = 36 cases

> P(even no. on both side) = $\frac{9}{36}$ or $\frac{1}{4}$ $\frac{-}{2}$

$$P(sum > 9) = \frac{6}{36} \text{ or } \frac{1}{6}$$

24. In a lottery, there are 10 prizes and 25 blanks. What is the probability of getting a prize?

Sol. Total =
$$10 + 25 = 35$$
, P(getting prize) = $\frac{10}{35}$ or $\frac{2}{7}$

25. A circle is inscribed in a $\triangle ABC$ touching AB, BC and AC at P, Q and R respectively. If AB = 10 cm, AR = 7 cm and CR = 5 cm, then find the length of BC.

Sol.

$$AP = AR = 7 \text{ cm}$$

$$PB = 10 - 7 = 3 \text{ cm}$$
 $\frac{1}{2}$

$$BQ = BP = 3 \text{ cm}$$
 $\frac{1}{2}$

$$QC = RC = 5 \text{ cm}$$

$$BC = 5 + 3 = 8 \text{ cm}$$

The length of the minute hand of clock is 14 cm. Find the area swept by the minute hand in 15 **26.** minutes.

Sol. Angle swept in 15 minutes =
$$90^{\circ}$$

Angle swept in 15 minutes =
$$90^{\circ}$$

$$\frac{2}{2}$$
Area = $\frac{22}{7} \times 14 \times 14 \times \frac{90^{\circ}}{360^{\circ}}$

$$= 154 \text{ cm}^2$$

SECTION C

Question numbers 27 to 34 carry 3 marks each.

27. Solve graphically:

$$2x - 3y + 13 = 0$$
; $3x - 2y + 12 = 0$

Sol. Correct graph of
$$2x - 3y + 13 = 0$$
, $3x - 2y + 12 = 0$

Solution
$$x = -2$$
, $y = 3$

Prove that $\sqrt{3}$ is an irrational number. 28.

Let $\sqrt{3}$ be a rational number Sol.

$$\sqrt{3} = \frac{p}{q}$$
 p, q are coprime, $q \neq 0$ $\frac{1}{2}$

$$3q^2 = p^2 \Rightarrow 3 \mid p^2 \Rightarrow 3 \mid p$$
 Let $p = 3 \text{ m}$

$$3q^2 = 9m^2 \Rightarrow q^2 = 3m^2 \Rightarrow 3 \mid q^2 \Rightarrow 3 \mid q$$
 $\frac{1}{2}$

:. 3 is common factor of p and q

1

Hence $\sqrt{3}$ is irrational No.

OR

Using Euclid's algorithm, find the HCF of 272 and 1032.

Sol.
$$1032 = 272 \times 3 + 216$$

$$272 = 216 \times 1 + 56$$

$$\frac{1}{2} + \frac{1}{2}$$

$$216 = 56 \times 3 + 48$$

$$\frac{1}{2} + \frac{1}{2}$$

$$48 = 8 \times 6 + 0$$
 HCF(1032, 272) = 8 $\frac{1}{2} + \frac{1}{2}$

29. If $x = 3 \sin \theta + 4 \cos \theta$ and $y = 3 \cos \theta - 4 \sin \theta$ then prove that $x^2 + y^2 = 25$.

Sol.
$$x^2 = 9 \sin^2 \theta + 16 \cos^2 \theta + 24 \sin \theta \cos \theta$$

$$y^2 = 9\cos^2\theta + 16\sin^2\theta - 24\sin\theta\cos\theta$$

$$x^2 + y^2 = 25$$

OR

If $\sin \theta + \sin^2 \theta = 1$; then prove that $\cos^2 \theta + \cos^4 \theta = 1$.

Sol.
$$\sin \theta = 1 - \sin^2 \theta = \cos^2 \theta$$

$$L.H.S = \cos^2 \theta + (\cos^2 \theta)^2 = \cos^2 \theta + \sin^2 \theta$$
1+1

$$= 1 = R.H.S$$

30. In a classroom, 4 friends are seated at the points A, B, C and D as shown in Fig. 3. Champa and Chameli walk into the class and after observing for a few minutes Champa asks Chameli, "Don't you think ABCD is a square?" Chameli disagrees. Using distance formula, find which of them is correct.

Fig. 3

Sol. A = (3, 4), B = (6, 7), C = (9, 4), D = (6, 1)

$$AB = 3\sqrt{2}, BC = 3\sqrt{2}, CD = 3\sqrt{2}, DA = 3\sqrt{2}$$

$$AC = 6 \text{ unit}$$
 $BD = 6 \text{ unit}$ $\frac{1}{2}$

$$AB = BC = CD = DA$$
 and $AC = BD$

ABCD is a square

 \therefore Champa is correct $\frac{1}{2}$

- 31. Draw a line segment of length 7 cm and divide it in the ratio 2:3.
- **Sol.** Correct construction

OR

Draw a circle of radius 4 cm and construct the pair of tangents to the circle from an external point, which is at a distance of 7 cm from its centre.

- Sol. Correct construction
- 32. If α and β are the zeroes of the polynomial $f(x) = 5x^2 7x + 1$, then find the value of $\left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)$.

Sol.
$$\alpha + \beta = \frac{7}{5}$$
 and $\alpha\beta = \frac{1}{5}$
$$\frac{1}{2} + \frac{1}{2}$$

$$\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = \frac{\alpha^2 + \beta^2}{\alpha\beta} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha\beta}$$

$$= \frac{\left(\frac{7}{5}\right)^2 - 2 \times \frac{1}{5}}{\frac{1}{5}}$$

$$=\frac{39}{5}$$
 or 7.8

33. A toy is in the form of a cone of radius 3.5 cm mounted on a hemisphere of same radius. If the total height of the toy is 15.5 cm, find the total surface area of the toy.

Height of cone =
$$15.5 - 3.5 = 12 \text{ cm}$$
 $\frac{1}{2}$

Slant height,
$$1 = \sqrt{(12)^2 + (3.5)^2} = 12.5 \text{ cm}$$

TSA of toy =
$$\pi(3.5) \times 12 + 2\pi(3.5)^2$$

$$= 66.5\pi \text{ or } 209 \text{ cm}^2$$

1

1

1

34. In the Fig.-4, two circles touch each other at a point C. Prove that the common tangent to the circles at C, bisects the common tangent at P and Q.

Fig. 4

Sol.
$$PR = RC$$
 ...(1) $PQ = RC$...(2)

From (1) and (2), PR = PQ

SECTION D

Question numbers 35 to 40 carry 4 marks each.

35. A person standing on the bank of a river observes that the angle of elevation of the top of a tree standing on opposite bank is 60° . When he moves 30 m away from the bank, he finds the angle of elevation to be 30° . Find the height of the tree and width of the river. [Take $\sqrt{3} = 1.732$]

Sol.

In right ΔABC

$$\tan 60^\circ = \frac{h}{x}$$

$$\sqrt{3}_{X} = h \qquad \dots (1)$$

In rt
$$\triangle ABD$$
 tan $30^{\circ} = \frac{h}{30 + x} \Rightarrow \frac{30 + x}{\sqrt{3}} = h$...(2) $\frac{1}{2} + \frac{1}{2}$

Solving (1) & (2)
$$x = 15m$$
, $h = 15\sqrt{3} m = 25.98 m$ $\frac{1}{2} + \frac{1}{2}$

36. Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

$$4 \times \frac{1}{2} = 2$$

Correct proof given, to prove, construction,

2

OR

Prove that the length of tangents drawn from an external point to a circle are equal.

$$4 \times \frac{1}{2} = 2$$

Correct proof given, to prove, construction,

2

1

37. From a solid cylinder whose height is 15 cm and the diameter is 16 cm, a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of remaining solid. (Give your answer in terms of π).

Sol.

$$1 = 17$$

$$r = 8 \text{ cm}$$

Total S.A. of remaining solid= C.S.A of cylinder + C.S.A of cone + Area of base

$$= 2\pi rh + \pi rl + \pi r^2 = \pi r(2h + l + r)$$

$$= \pi \times 8(2 \times 15 + 17 + 8) = 8\pi(55) = 440\pi \text{ cm}^2$$

OR

The height of a cone is 10 cm. The cone is divided into two parts using a plane parallel to its base at the middle of its height. Find the ratio of the volumes of the two parts.

Sol.

For correct fig 1

$$\Delta OAB \sim \Delta OCD$$

$$\frac{\text{OA}}{\text{OC}} = \frac{\text{AB}}{\text{CD}} \Rightarrow \frac{5}{10} = \frac{\text{r}}{\text{R}}$$

$$\Rightarrow$$
 R = 2r

$$\frac{\text{V of cone}}{\text{V of frustum}} = \frac{\frac{1}{3}\pi r^2 5}{\frac{1}{3}\pi (r^2 + R^2 + rR)} = \frac{r^2}{7r^2} = \frac{1}{7}$$
1+1

or 7:1

38. The 17th term of an A.P. is 5 more than twice its 8th term. If 11th term of A.P. is 43; then find its nth term.

Sol.
$$a_{17} = 2a_8 + 5 \Rightarrow a + 16d = 2(a + 7d) + 5$$

$$\Rightarrow 2d - a = 15 \qquad ...(1)$$

$$a_{11} = 43 \Rightarrow a + 10d = 43$$
 ...(2)

Solving (1) & (2)
$$a = 3$$
 $d = 4$

$$a_n = 4n - 1$$

OR

How many terms of A.P. 3, 5, 7, 9, ... must be taken to get the sum 120?

Sol.
$$a = 3$$
, $d = 3$, $Sn = 120$

$$\frac{n}{2}[2\times 3 + (n-1)2] = 120 \implies n^2 + 2n - 120 = 0$$

1

1

$$(n+12) (n-10) = 0$$

$$n = -12, n = 10$$

Reject n = -12, n = 10

39. Find the median for the given frequency distribution:

Classes	40 – 45	45 – 50	50 – 55	55 – 60	60 – 65	65 - 70	70 – 75
Frequency	2	3	8	6	6	3	2

Sol. Class Frequency cf

$$Median class = 55 - 60$$

Median =
$$55 + \frac{\left(\frac{30}{2} - 13\right)}{6} \times 5$$

$$= 56\frac{2}{3} \text{ or } 56.67$$

$$\frac{1}{2}$$

- 40. If the price of a book is reduced by ₹ 5, a person can buy 4 more books for ₹ 600. Find the original price of the book.
- **Sol.** Let original price of the book be \mathbb{Z} x

A.T.Q.

$$\frac{600}{x-5} - \frac{600}{x} = 4$$

$$x^2 - 5x - 750 = 0$$

$$(x - 30)(x + 25) = 0$$

$$x = 30 \text{ or } -25$$

Price is always positive, so original price of book is is ₹30