	CBSE Class 10 Maths Question Paper Solution 2020 Set 430/4/1						
		UESTION PAPER					
	EXPI	ECTED ANSWER/ SECTION					
	Question numbers 1 to	20 carry 1 mark each.					
	Choose the correct opti	on in question numbers	s 1 to 10.				
1.	Given that HCF (156, 7	78) = 78, LCM (156, 78) is				
	(A) 156	(B) 78	(C) 156 × 78	(D) 156 × 2			
Sol.	(A) 156				1		
2.	Sides of two similar tri	angles are in the ratio 4	4:9. Areas of these tr	riangles are in the ra	tio		
	(A) 4:9	(B) 2 : 3	(C) 81 : 16	(D) 16 : 81			
Sol.	(D) 16 : 81				1		
3.	The distance between t	he points $(-1, -3)$ and	l (5, – 2) is				
	(A) $\sqrt{61}$ units	(B) $\sqrt{37}$ units	(C) 5 units	(D) $\sqrt{17}$ units			
Sol.	(B) $\sqrt{37}$ units				1		
4.	The discriminant of the	e quadratic equation 2x	$^{2}-4x+3=0$ is				
	(A) – 8	(B) 10	(C) 8	(D) $2\sqrt{2}$			
Sol.	(A) -8				1		
		OR					
	Roots of the quadratic	equation $2x^2 - 4x + 3 =$	= 0 are				
	(A) real and equal	(B) real and distinct	(C) not real	(D) real			
Sol.	(C) Not Real				1		

> Number of zeroes of the polynomial p(x) shown in Figure-1, are 5.

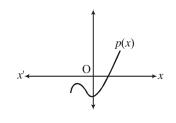


Figure 1

	(A) 3	(B) 2	(C) 1	(D) 0
Sol.	(C) 1			

1

6. A dice is thrown once. The probability of getting an odd number is

	(A) 1	$(\mathbf{B}) \ \frac{1}{2}$	(C) $\frac{4}{6}$	(D) $\frac{2}{6}$	
Sol.	(B) $\frac{1}{2}$				1
7.	The value of k fo lines, is	or which the equations 3	x - y + 8 = 0 and $6x + k$	xy = – 16 represent coir	ncident
	$(A) -\frac{1}{2}$	(B) $\frac{1}{2}$	(C) 2	(D) – 2	
Sol.	(D) -2	-			1
8.	If sin A = cos A,	$0 \le A \le 90^\circ$, then the	angle A is equal to		
	(A) 30 °	(B) 60°	(C) 0 °	(D) 45°	
Sol.	(D) 45°				1
9.	The second term	from the end of the A.	P. 5, 8, 11,, 47 is		
	(A) 50	(B) 45	(C) 44	(D) 41	
Sol.	(C) 44				1
10.	Total surface are	ea of a solid hemisphere	e is		
	(A) $3\pi r^2$	(B) $2\pi r^2$	(C) $4\pi r^2$	(D) $\frac{2}{3}\pi r^3$	
Sol.	(A) $3\pi r^2$				1
	Fill in the blanks	s in question numbers 11	l to 15.		
11.	The roots of the	equation, $x^2 + bx + c =$	0 are equal if	_•	
Sol.	$b^2 = 4c$				1
12.	The mid-point of	f the line segment joinin	ing the points $(-3, -3)$	and (- 3, 3) is	•
Sol.	(-3, 0)				1
13.	The lengths of th	ne tangents drawn from	an external point to a	circle are	
Sol.	Equal				1
	For a since dist	ribution with 100 obser	vations, the 'less than'	ogive and 'more than	' ogive
14.		50). The median of the c		8	0

1

 $\frac{1}{2}$

1

 $\overline{2}$

1

 $\overline{2}$

1

2

 $\frac{1}{2}$

1

 $\overline{2}$

- 15. In the quadratic polynomial $t^2 16$, sum of the zeroes is _____.
- **Sol.** 0

Answer the following question numbers 16 to 20.

16. Write the 26th term of the A.P. 7,4,1, -2,

Sol. d = -3

 $a_{26} = -68$

- 17. Find the coordinates of the point on x-axis which divides the line segment joining the points (2, 3) and (5, -6) in the ratio 1 : 2.
- **Sol.** Let the point on x-axis be (x, 0)
 - \therefore Required point is (3, 0)
 - 18. If cosec $\theta = \frac{5}{4}$, find the value of $\cot \theta$.
 - Sol. $\cot^2 \theta = \frac{25}{16} 1 = \frac{9}{16}$ $\cot \theta = \frac{3}{4}$ $\frac{1}{2}$

OR

Find the value of sin $42^{\circ} - \cos 48^{\circ}$.

Sol.
$$\sin 42^\circ = \cos (90^\circ - 42^\circ) = \cos 48^\circ$$

 $\therefore \sin 42^\circ - \cos 48^\circ = 0$

19. The angle of elevation of the top of the tower AB from a point C on the ground, which is 60 m away from the foot of the tower, is 30°, as shown in Figure-2. Find the height of the tower.

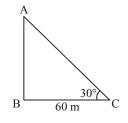


Figure 2

Sol.	$\tan 30^\circ = \frac{AB}{60^\circ}$	$\frac{1}{2}$
	$\Rightarrow AB = \frac{60}{\sqrt{3}}$ or $20\sqrt{3}$ m	$\frac{1}{2}$

20. In Figure-3, find the length of the tangent PQ drawn from the point P to a circle with centre at O, given that OP = 12 cm and OQ = 5 cm.

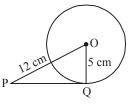


Figure 3

Sol.	$PQ^2 = 144 - 25 = 119$	$\frac{1}{2}$
	\therefore PQ = $\sqrt{119}$ units	$\frac{1}{2}$

SECTION B

Question numbers 21 to 26 carry 2 marks each.

21. A cylindrical bucket, 32 cm high and with radius of base 14 cm, is filled completely with sand. Find the volume of the and. (Use $\pi = \frac{22}{7}$)

Sol. Volume of sand =
$$\frac{22}{7} \times 14 \times 14 \times 32$$
 1
= 19712 cm³

22. In Figure-4, $\triangle ABC$ and $\triangle XYZ$ are shown. If AB = 3.8 cm, $AC = 3\sqrt{3}$ cm, BC = 6 cm, $XY = 6\sqrt{3}$ cm, XZ = 7.6 cm, YZ = 12 cm and $\angle A = 65^{\circ}$, $\angle B = 70^{\circ}$, then find the value of $\angle Y$.

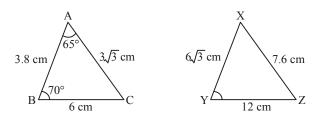


Figure 4

Sol.	$\Delta ABC \sim \Delta XZY$	1
	$\Rightarrow \angle Y = \angle C = 180^{\circ} - (\angle A + \angle B)$	$\frac{1}{2}$
	$\Rightarrow \angle Y = 45^{\circ}$	$\frac{1}{2}$

OR

If the areas of two similar triangles are equal, show that they are congruent.

Sol.	Let $\triangle ABC \sim \triangle PQR$	
	$\therefore \frac{\operatorname{ar}(ABC)}{\operatorname{ar}(PQR)} = 1 = \frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2}$	1
	\Rightarrow AB = PQ, BC = QR, AC = PR	$\frac{1}{2}$
	$\therefore \Delta ABC \cong \Delta PQR \text{ (SSS congrence rule)}$	$\frac{1}{2}$
23.	If sec 2A = cosec (A – 30°), $0^{\circ} < 2A < 90^{\circ}$, then find the value of $\angle A$.	
Sol.	sec $2A = cosec (A - 30^{\circ})$	
	\Rightarrow cosec (90° - 2A) = A - 30°	1
	$\Rightarrow 90^{\circ} - 2A = A - 30^{\circ}$	$\frac{1}{2}$
	$\Rightarrow \angle A = 40^{\circ}$	$\frac{1}{2}$

Show that every positive even integer is of the form 2q and that every positive odd integer is 24. of the form 2q + 1, where q is some integer.

Sol.

Let 'a' be any positive integer and b = 2

Using Euclid's Division lemma a = 2q + r, r = 0, 11 \therefore a = 2q or 2q + 1 Because 2q is an even integer and every positive ineger is either even or odd. \therefore a = 2q + 1 is an odd positive integer. 1 25. How many two-digit numbers are divisible by 6? Sol. Two digit numbers divisible by 6 are 12, 18, 24,...96 1 1 $96 = 12 + (n - 1) \times 6$ 2 $\frac{1}{2}$ \Rightarrow n = 15

OR

In an A.P. it is given that common difference is 5 and sum of its first ten terms is 75. Find the first term of the A.P.

Sol. $S_{10} = 75$ and $n = 10$	$\frac{1}{2}$
$\frac{10}{2}(2a+9\times5) = 75$	1
$\Rightarrow a = -15$	$\frac{1}{2}$

26. The following table shows the ages of the patients admitted in a hospital during a year:

Age (in years):	5 – 15	15 – 25	25 – 35	35 - 45	45 – 55	55 - 65
Number of patients:	60	110	210	230	150	50

Find the mode of the distribution.

Sol. Modal class is 35 - 45

$$\therefore \text{ Mode} = 35 + \frac{230 - 210}{460 - 210 - 150} \times 10$$

$$= 37$$

$$\frac{1}{2}$$

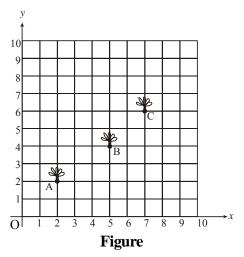
 $\frac{1}{2}$

SECTION C

Question numbers 27 to 34 carry 3 marks each.

27. Seema has a 10 m \times 10 m kitchen garden attached to her kitchen. She divides it into a 10×10 grid and wants to grow some vegetables and herbs used in the kitchen. She puts some soil and manure in that and sows a green chilly plant at A, a coriander plant at B and a tomato plant at C.

Her friend Kusum visited the garden and praised the plants grown there. She pointed out that they seem to be in a straight line. See the below diagram carefully and answer the following questions:



- (i) Write the coordinates of the points A, B and C taking the 10×10 grid as coordinate axes.
- (ii) By distance formula or some other formula, check whether the points are collinear.
- Sol. (i) Coordinates of A, B and C are

(2, 2), (5, 4), (7, 6)
(i) Area of triangle =
$$\frac{1}{2} [2(4-6)+5(6-2)+7(2-4)]$$

= 1 \neq 0
 $\frac{1}{2}$

1

2

- ... Points are not collinear
- 28. In Figure-5, a circle is inscribed in a \triangle ABC touching BC, CA and AB at P, Q and R respectively. If AB = 10 cm, AQ = 7 cm, CQ = 5 cm, find the length of BC.

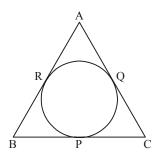


Figure 5

Sol.	AR = AQ = 7 cm	1
	BR = AB - AR = 10 - 7 = 3 cm	$\frac{1}{2}$
	BC = BP + PC	
	= BR + CQ	1
	= 3 + 5 = 8 cm	$\frac{1}{2}$

OR

In Figure-6, two tangents TP and TQ are drawn to a circle with centre O from an external point T. Prove that $\angle PTQ = 2 \angle OPQ$.

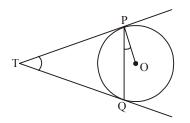


Figure 6

Sol. Let
$$\angle PTQ = \theta$$

 $\therefore TP = TQ$
 $\therefore \angle TPQ = \angle TQP = \frac{1}{2}(180^\circ - \theta)$
 $= 90^\circ - \frac{1}{2}\theta$
 $\therefore \angle TPO = 90^\circ$
 $\therefore \angle OPQ = 90^\circ - (90^\circ - \frac{1}{2}\theta)$
 $= \frac{1}{2}\theta = \frac{1}{2}\angle PTQ$
 $\Rightarrow \angle PTQ = 2 \angle OPQ$
29. Prove that $\sqrt{2}$ is an irrational number.

Sol. Let us assume
$$\sqrt{2}$$
 is a rational number.

Squaring both sides

$$2 = \frac{p^2}{q^2} \Rightarrow p^2 = 2q^2 \qquad (i)$$
$$\Rightarrow p = 2m \qquad (ii)$$

Using equations (i) and (ii)

$$4m^{2} = 2q^{2}$$

$$\Rightarrow q = 2m$$
(iii) 1

Using equation (ii) and (iii) we get p and q both are multiples of 2 which contradicts the assumption.

	1
Hence $\sqrt{2}$ is an irrational number.	$\frac{1}{2}$
	-

30. Prove that:

$$(\operatorname{cosec} \theta - \operatorname{cot} \theta)^{2} = \frac{1 - \cos \theta}{1 + \cos \theta}$$
Sol. LHS = $(\operatorname{cosec} \theta - \cot \theta)^{2}$

$$= \left(\frac{1}{\sin \theta} - \frac{\cos \theta}{\sin \theta}\right)^{2}$$

$$= \frac{(1 - \cos \theta)^{2}}{\sin^{2} \theta}$$

$$= \frac{(1 - \cos \theta)^{2}}{(1 - \cos \theta)(1 + \cos \theta)}$$

$$= \frac{1 - \cos \theta}{1 + \cos \theta} = \operatorname{R.H.S.}$$

$$\frac{1}{2}$$

31. 5 pencils and 7 pens together cost ₹ 250 whereas 7 pencils and 5 pens together cost ₹ 302. Find the cost of one pencil and that of a pen.

Sol. Let the cost of 1 pencil be \gtrless x and cost of 1 pen be \gtrless y.

5x + 7y = 250	(i)	1
7x + 5y = 302	(ii)	1
Solving (i) and (ii)		

1

x = 36 and y = 10 Hence, cost of 1 pencil = ₹ 36 cost of 1 pen = ₹ 10

OR

Solve the following pair of equations using cross-multiplication method:

- 32. One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting
 - (i) a king of red colour.
 - (ii) the queen of diamonds.

(iii) an ace.

Sol. To al number of possible outcomes = 52

(i) P(Card is a king of Red colour) =
$$\frac{2}{52}$$
 or $\frac{1}{26}$

(ii) P(card is a queen of diamonds) =
$$\frac{1}{52}$$
 1

1

(iii) P(Card is an ace) =
$$\frac{4}{52}$$
 or $\frac{1}{13}$

OR

A box contains 90 discs which are numbered from 1 to 90. If one disc is drawn at random from the box, find the probability that it bears

- (i) a two-digit number.
- (ii) a perfect square number.
- (iii) a prime, number less than 15.
- **Sol.** Total number of possible outcomes = 90

(i) P(a two digit number) =
$$\frac{81}{90}$$
 or $\frac{9}{10}$

(ii) P(a perfect square number) =
$$\frac{9}{90}$$
 or $\frac{1}{10}$

(iii) P(a prime number less than 15) =
$$\frac{6}{90}$$
 or $\frac{1}{15}$

33. In Figure-7, ABCD is a square of side 14 cm. From each corner of the square, a quadrant of a circle of radius 3.5 cm is cut and also a circle of radius 4 cm is cut as shown in the figure. Find the area of the remaining (shaded) portion of the square.

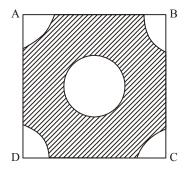


Figure 7

Sol. Area of the square = $14 \times 14 = 196$ cm²

Area of middle circle =
$$\frac{22}{7} \times 4 \times 4 = 50.28 \text{ cm}^2$$

1

 $\overline{2}$

1

1

2

Area of four quadrants =
$$4 \times \frac{1}{4} \times \frac{22}{7} \times 3.5 \times 3.5$$

= 38.5 cm²

Hence, Area of Remaining part of square.

$$= 196 - (50.28 + 38.5)$$
$$= 107.22 \text{ cm}^2 \qquad \qquad \frac{1}{2}$$

34. Draw a circle of radius 3 cm. Take a point P outside the circle at a distance of 7 cm from the centre O of the circle and draw two tangents to the circle.

Sol.	Drawing a circle and locating point P.
	Constructing tangents from P.

SECTION D

Question numbers 35 to 40 marks each.

35. In a right-angled triangle, prove that the square of the hypotenuse is equal to the sum of the squares of the remaining two sides.

Sol.	For correct given, to prove, figure and construction.	$4 \times \frac{1}{2} = 2$
	Correct proof	2

36. Divide polynomial $-x^3 + 3x^2 - 3x - 3x + 5$ by the polynomial $x^2 + x - 1$ and verify the division algorithm.

2

1

 $\frac{1}{2}$

 $\frac{1}{2}$

 $\overline{2}$

Sol. On dividing
$$-x^3 + 3x^2 - 3x + 5$$
 by $x^2 + x - 1$
We get quotient $= -x + 4$
and Remainder $= -8x + 9$
Verification
 $(x^2 + x - 1) (-x + 4) + (9 - 8x)$
 $= -x^3 - x^2 + x + 4x^2 + 4x - 4 + 9 - 8x$
 $= -x^3 + 3x^2 - 3x + 5$

OR

Find other zeroes of the polynomial

$$\mathbf{p}(\mathbf{x}) = 2\mathbf{x}^4 - 3\mathbf{x}^3 - 3\mathbf{x}^2 + 6\mathbf{x} - 2$$

if two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.

Sol. Two factors of
$$p(x)$$
 are $\left(x - \sqrt{2}\right)$ and $\left(x + \sqrt{2}\right)$ $\frac{1}{2}$

$$g(x) = (x + \sqrt{2}) \text{ and } (x - \sqrt{2})$$
$$= x^2 - 2$$
$$\frac{1}{2}$$

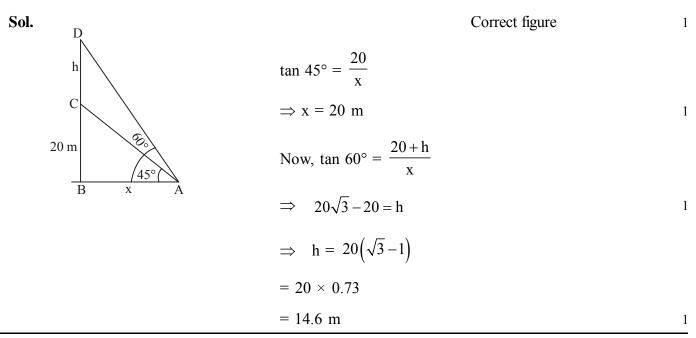
Now,
$$\frac{2x^4 - 3x^3 - 3x^2 + 6x - 2}{x^2 - 2} = 2x^2 - 3x + 1$$

Also,
$$2x^2 - 3x + 1 = (2x - 1) (x - 1)$$

Other zeroes are $\frac{1}{2}$, 1
 $\frac{1}{2}$

37. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower, fixed at the top of a 20 m high building, are 45° and 60° respectively. Find the height of

the tower. (Use $\sqrt{3} = 1.73$)



38. A bucket is in the form of a frustum of a cone of height 30 cm with the radii of its lower and upper circular ends as 10 cm and 20 cm respectively. Find the capacity of the bucket. (Use $\pi = 3.14$)

Sol. Capacity of bucket =
$$\frac{1}{3}\pi h(r_1^2 + r_2^2 + r_1r_2)$$

= $\frac{1}{3} \times 3.14 \times 30(100 + 400 + 200)$ 2
= 21980 cm³ 2

OR

Water in a canal 6 m wide and 1.5 m deep, is flowing with a speed of 10 km/hr. How much area will it irrigate in 30 minutes if 4 cm of standing water is needed?

Sol.	Length of canal covered by water in $30 \text{ min.} = 5000 \text{ m}$	1
	Volume of water flown in 30 min. = $6 \times 1.5 \times 5000 \text{ m}^3$	1
	Hence, $6 \times 1.5 \times 5000 = (\text{Area of field}) \times \frac{4}{100}$	1
	\therefore Area of field = 1125000 m ²	1

39. Draw a 'more than' ogive for the following distribution:

Weigth (in kg):	40 - 44	44 - 48	48 – 52	52 - 56	56 - 60	60 - 64	64 - 68
Number of	4	10	30	24	18	12	2
Students:							

Sol. Points to be plotted for more than type ogive

(40, 100), (44, 96), (48, 86), (52, 56), (56, 32), (60, 14), (64, 2)	2
--	---

2

1

For drawing correct ogive

- 40. A train travels 360 km at a uniform speed. If the speed had been 5 km/hr more, it would have taken 1 hour less for the same journey. Find the original speed of the train.
- **Sol.** Let original speed of the train be x km/h.

$$\therefore \frac{360}{x} - \frac{360}{x+5} = 1$$

$$\Rightarrow x^2 + 5x - 1800 = 0$$

$$\Rightarrow (x + 45) \quad (x - 40) = 0$$

$$\Rightarrow x = 40$$

 \therefore Speed of the train is 40 km/h

OR

Sum of the areas of two squares is 468 m^2 . If the difference of their parameters is 24 m, find the sides of the two squares.

Sol. Let the side of squares be x m, y m (x > y) $\therefore x^2 + y^2 = 468$...(i) 1 and 4(x - y) = 24...(ii) 1 Simplify (i) and (ii) to get $x^2 - 6x - 216 = 0$ 1 \Rightarrow (x - 18) (x + 12) = 0 1 $\Rightarrow x = 18$ $\overline{2}$ 1 and y = 12 $\overline{2}$ \therefore Sides of square are 18 m and 12 m.