CBSE Class 10 Maths Question Paper Solution 2020

Set 430/5/1
QUESTION PAPER CODE 430/5/1
EXPECTED ANSWER/VALUE POINTS

SECTION A

1. If a pair of linear equations is consistent, then the lines represented by them are
(A) parallel
(B) intersecting or coincident
(C) always coincident
(D) always intersecting

Sol. (B) Intersecting or coincident.
2. The distance between the points $(3,-2)$ and $(-3,2)$ is
(A) $\sqrt{52}$ units
(B) $4 \sqrt{10}$ units
(C) $2 \sqrt{10}$ units
(D) 40 units

Sol. (A) $\sqrt{52}$ units
3. $8 \cot ^{2} A-8 \operatorname{cosec}^{2} A$ is equal to
(A) 8
(B) $\frac{1}{8}$
(C) -8
(D) $-\frac{1}{8}$

Sol. (C) -8
4. The total surface area of a frustum-shaped glass tumbler is $\left(r_{1}>r_{2}\right)$
(A) $\pi \mathrm{r}_{1} I+\pi \mathrm{r}_{2} I$
(B) $\pi l\left(r_{1}+r_{2}\right)+\pi \mathrm{r}_{2}^{2}$
(C) $\frac{1}{3} \pi h\left(r_{1}^{2}+r_{2}^{2}+r_{1} r_{2}\right)$
(D) $\sqrt{\mathrm{h}^{2}+\left(\mathrm{r}_{1}-\mathrm{r}_{2}\right)^{2}}$

Sol. (B) $\pi l\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right)+\pi \mathrm{r}_{2}^{2}$
5. 120 can be expressed as a product of its prime factors as
(A) $5 \times 8 \times 3$
(B) 15×2^{3}
(C) $10 \times 2^{2} \times 3$
(D) $5 \times 2^{3} \times 3$

Sol. (D) $5 \times 2^{3} \times 3$
6. The discriminant of the quadratic equation $4 x^{2}-6 x+3=0$ is
(A) 12
(B) 84
(C) $2 \sqrt{3}$
(D) -12

Sol. (D) -12
7. If $(3,-6)$ is the mid-point of the line segment joining $(0,0)$ and (x, y), then the point (x, y) is
(A) $(-3,6)$
(B) $(6,-6)$
(C) $(6,-12)$
(D) $\left(\frac{3}{2},-3\right)$

Sol. (C) $(6,-12)$
8. In the given circle in Figure-1, number of tangents parallel to tangent $P Q$ is

Fig. 1
(A) 0
(B) many
(C) 2
(D) 1

Sol. (D) 1
9. For the following frequency distribution:

Class:	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$
Frequency	8	10	19	25	8

The upper limit of median class is
(A) 15
(B) 10
(C) 20
(D) 25

Sol. (A) 15
10. The probability of an impossible event is
(A) 1
(B) $\frac{1}{2}$
(C) not defined
(D) 0

Sol. (D) 0
Fill in the blanks in question numbers 11 to 15.
11. A line intersecting a circle in two points is called a \qquad .

Sol. Secant
12. If 2 is a zero of the polynomial $a x^{2}-2 x$, then the value of ' a ' is \qquad .
Sol. 1
13. All squares are \qquad (congruent/similar).

Sol. Similar
14. If the radii of two spheres are in the ratio $2: 3$, then the ratio of their respective volumes is
\qquad .
Sol. $8 / 27$ or $8: 27$
15. If ar ($\triangle \mathrm{PQR}$) is zero, then the points P, Q and R are \qquad .
Sol. Collinear

Answer the following question numbers 16 to 20:
16. In Figure-2, the angle of elevation of the top of a tower $A C$ from a point B on the ground is 60°. If the height of the tower is 20 m , find the distance of the point from the foot of the tower.

Fig. 2
Sol. $\frac{\mathrm{AC}}{\mathrm{AB}}=\tan 60^{\circ}$

$$
\frac{20}{\mathrm{AB}}=\sqrt{3}
$$

$$
\mathrm{AB}=\frac{20 \sqrt{3}}{3} \text { or } \frac{20}{\sqrt{3}}
$$

17. Evaluate:
$\tan 40^{\circ} \times \tan 50^{\circ}$
Sol. $\tan 40^{\circ} \times \cot 40^{\circ}$

$$
=1
$$

OR

If $\cos A=\sin 42^{\circ}$, then find the value of A.
Sol. $\quad \cos \mathrm{A}=\sin \left(90^{\circ}-48^{\circ}\right)$

$$
=\cos 48^{\circ}
$$

$\Rightarrow \mathrm{A}=48^{\circ}$
18. A coin is tossed twice. Find the probability of getting head both the times.

Sol. Total outcomes $=4$
$P($ getting head both the times $)=\frac{1}{4}$
19. Find the height of a cone of radius 5 cm and slant height 13 cm .

Sol. $\mathrm{h}=\sqrt{(13)^{2}-(5)^{2}}$
$\mathrm{h}=12 \mathrm{~cm}$
20. Find the value of x so that $-6, x, 8$ are in A.P.

Sol. $x+6=8-x$

$$
\mathrm{x}=1
$$

OR
Find the $11^{\text {th }}$ term of the A.P. $-27,-22,-17,-12, \ldots$.
Sol. $\mathrm{a}=-27, \mathrm{~d}=5$
$a_{11}=-27+50=23$

SECTION B

Question numbers 21 to 26 carry 2 marks each.
21. Find the roots of the quadratic equation
$3 x^{2}-4 \sqrt{3} x+4=0$.
Sol. $\quad 3 x^{2}-2 \sqrt{3} x-2 \sqrt{3} x+4=0$
$(\sqrt{3} x-2)(\sqrt{3} x-2)=0$
$\sqrt{3} x-2=0 \Rightarrow x=2 / \sqrt{3}$
22. Check whether $\mathbf{6}^{\mathbf{n}}$ can end with the digit ' 0 ' (zero) for any natural number n.

Sol. $6^{\mathrm{n}}=(2 \times 3)^{\mathrm{n}}=2^{\mathrm{n}} \times 3^{\mathrm{n}}$
It is not in form of $2^{\mathrm{n}} \times 5^{\mathrm{m}}$
$\therefore \quad 6^{n}$ can't end with digit ' 0 '

OR

Find the LCM of 150 and 200.
Sol. $\quad 150=2 \times 3 \times 5^{2}$
$200=2^{3} \times 5^{2}$
$\mathrm{LCM}=2^{3} \times 5^{2} \times 3$

$$
=600
$$

23. If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\frac{1}{\sqrt{3}}, 0<A+B \leq 90^{\circ}, A>B$, then find the value of A and B.

Sol. $\mathrm{A}+\mathrm{B}=60^{\circ}$
$\mathrm{A}-\mathrm{B}=30^{\circ}$
From (i) and (ii)
$\left.\begin{array}{l}\mathrm{A}=45^{\circ} \\ \mathrm{B}=15^{\circ}\end{array}\right]$
24. In Figure-3, $\triangle A B C$ and $\triangle X Y Z$ are shown. If $A B=3 \mathrm{~cm} \mathrm{BC}=6 \mathrm{~cm}, A C=2 \sqrt{3} \mathrm{~cm}, \angle A=80^{\circ}$, $\angle B=60^{\circ}, X Y=4 \sqrt{3} \mathrm{~cm} \mathrm{YZ}=12 \mathrm{~cm}$ and $X Z=6 \mathrm{~cm}$, then find the value of $\angle Y$.

Figure 3
Sol. $\because \frac{\mathrm{AB}}{\mathrm{XZ}}=\frac{\mathrm{BC}}{\mathrm{YZ}}=\frac{\mathrm{AC}}{\mathrm{XY}}=\frac{1}{2}$
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{XZY}$

$$
\angle \mathrm{C}=\angle \mathrm{Y}=40^{\circ}
$$

25. 14 defective bulbs are accidentally mixed with $\mathbf{9 8}$ good ones. It is not possible to just look at the bulb and tell whether it is defective or not. One bulb is taken out at random from this lot. Determine the probability that the bulb taken out is a good one.
Sol. Total outcomes $=14+98=112$
$\mathrm{P}($ good bulb $)=\frac{98}{112}$ or $\frac{7}{8}$
26. Find the mean for the following distribution:

Classes:	$5-15$	$15-35$	$25-35$	$35-45$
Frequency:	2	4	3	1

Sol. Classes Freq. \quad Mid value $=\mathbf{x} \quad \mathbf{f} \times \mathbf{x}$
Correct table

$5-15$	2	10	20	$\overline{\mathrm{x}}=\frac{\Sigma \mathrm{fx}}{\Sigma \mathrm{f}}$
$15-25$	4	20	80	$\frac{1}{2}$
$25-35$	3	30	90	$\frac{2}{10}$
$35-45$	1	40	40	
	$\Sigma \mathrm{f}=10$		$\Sigma \mathrm{fx}=230$	

OR
The following distribution shows the transport expenditure of $\mathbf{1 0 0}$ employees:

Expenditure (in (₹):	$200-400$	$400-600$	$600-800$	$800-1000$	$1000-1200$
Number of employees:	21	25	19	23	12

Find the mode of the distribution.
Sol. Modal class $=400-600$

$$
\begin{aligned}
\text { Mode } & =1+\left[\frac{\mathrm{f}_{1}-\mathrm{f}_{0}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}}\right] \times \mathrm{h} \\
& =400+\left[\frac{25-21}{50-21-19}\right] \times 200 \\
& =400+80=480
\end{aligned}
$$

SECTION C

Question numbers 27 to 34 carry 3 marks each.
27. A quadrilateral $A B C D$ is drawn to circumscribe a circle. Prove that $A B+C D=A D+B C$.

Sol.

Proof: $\mathrm{AP}=\mathrm{AS}$

$$
\begin{array}{l|l}
\mathrm{BP}=\mathrm{BQ} \\
\mathrm{CR}=\mathrm{CQ} & 4 \times \frac{1}{2}=2
\end{array}
$$

\therefore By adding,

$$
\mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{DR}=\mathrm{AS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS}
$$

$$
\mathrm{AB}+\mathrm{CD}=\mathrm{AD}+\mathrm{BC}
$$

28. The difference between two numbers is 26 and the larger number exceeds thrice of the smaller number by 4 . Find the numbers.

Sol. Let larger No. $=x$
Let smaller No = y

$$
\begin{align*}
& x-y=26 \tag{i}\\
& x-3 y=4
\end{align*}
$$

By solving (i) \& (ii), we get

$$
\therefore \quad \mathrm{x}=37
$$

$$
y=11
$$

OR
Solve for x and y :

$$
\frac{2}{x}+\frac{3}{y}=13 \text { and } \frac{5}{x}-\frac{4}{y}=-2
$$

Sol. Let $\frac{1}{\mathrm{x}}=\mathrm{p} \& \frac{1}{\mathrm{y}}=\mathrm{q}$

$$
\begin{align*}
& 2 p+3 q=13 \tag{i}\\
& 5 p-3 q=-2 \tag{ii}
\end{align*}
$$

By solving (i) \& (ii), we get

$$
\therefore \quad \mathrm{p}=2, \mathrm{q}=3
$$

$$
\therefore \quad \frac{1}{\mathrm{x}}=2, \quad \frac{1}{\mathrm{y}}=3
$$

$$
\mathrm{x}=\frac{1}{2} \quad \mathrm{y}=\frac{1}{3}
$$

29. Prove that $\sqrt{3}$ is an irrational number.

Sol. Let $\sqrt{3}$ is rational
$\sqrt{3}=\frac{\mathrm{a}}{\mathrm{b}}($ where $\mathrm{a} \& \mathrm{~b}$ are + ve integers $\&$ co-prime, $\mathrm{b} \neq 0)$

$$
\begin{equation*}
\mathrm{a}^{2}=3 \mathrm{~b}^{2} \tag{i}
\end{equation*}
$$

3 divides a^{2}
$\therefore 3$ divides a also
Let $\mathrm{a}=3 \mathrm{c} \&$ put in (i)
$(3 \mathrm{c})^{2}=3(b)^{2}$
$3 \mathrm{c}^{2}=\mathrm{b}^{2}$
$\Rightarrow 3$ divides b^{2}
$\therefore 3$ divides b also
$\therefore 3$ divides a and b both
This contradicts our assumption

Therefore, $\sqrt{3}$ is irrational no.
30. Krishna has an apple orchard which has a $10 \mathrm{~m} \times 10 \mathrm{~m}$ sized kitchen garden attached to it. She divides it into a 10×10 grid and puts soil and manure into it. She grows a lemon plant at A , a coriander plant at B, an onion plant at C and a tomato plant at D. Her husband Ram praised her kitchen garden and points out that on joining A, B, C and D they may form a parallelogram. Look at the below figure carefully and answer the following questions:

(i) Write the coordinates of the points A, B, C and D, using the 10×10 grid as coordinate axes. (ii) Find whether $A B C D$ is a parallelogram or not.

Sol. (i) Coordinates are $\mathrm{A}(2,2), \mathrm{B}(5,4), \mathrm{C}(7,7), \mathrm{D}(4,5)$

$$
4 \times \frac{1}{2}=2
$$

(ii) $\mathrm{AB}=\sqrt{(5-2)^{2}+(4-2)^{2}}=\sqrt{13}$

$$
\begin{aligned}
\mathrm{BC} & =\sqrt{13} \\
\mathrm{CD} & =\sqrt{13}
\end{aligned}
$$

$$
\mathrm{DA}=\sqrt{13} \quad\left[\begin{array}{l}
\because \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA} \\
\therefore \mathrm{ABCD} \text { is a parallelogram}
\end{array}\right]
$$

31. If the sum of the first $\mathbf{1 4}$ terms of an A.P. is $\mathbf{1 0 5 0}$ and its first term is $\mathbf{1 0}$ then find the $\mathbf{2 1}{ }^{\text {st }}$ term of the A.P.

Sol. $\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]=1050$
$7[20+13 \mathrm{~d}]=1050$
$\therefore \mathrm{d}=10$

$$
a_{21}=a+20 d=10+20 \times 10=210
$$

32. Construct a triangle with its sides $4 \mathrm{~cm}, 5 \mathrm{~cm}$ and 6 cm . Then construct a triangle similar to it whose sides are $\frac{2}{3}$ of the corresponding sides of the first triangle.
Sol. For correct construction of Δ
For construction of similar Δ

OR
Draw a circle of radius 2.5 cm . Take a point P at a distance of $\mathbf{8 c m}$ from its centre. Construct a pair of tangents from the point P to the circle.
Sol. For draw the correct circle \& exterior pt.
For construction of the pair of tangents
33. Prove that:
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$
Sol. \quad LHS $=\left(\frac{1}{\sin \mathrm{~A}}-\sin \mathrm{A}\right)\left(\frac{1}{\cos \mathrm{~A}}-\cos \mathrm{A}\right)$
$=\frac{1-\sin ^{2} \mathrm{~A}}{\sin \mathrm{~A}} \times \frac{1-\cos ^{2} \mathrm{~A}}{\cos \mathrm{~A}}$
$=\frac{\cos ^{2} \mathrm{~A}}{\sin \mathrm{~A}} \times \frac{\sin ^{2} \mathrm{~A}}{\cos \mathrm{~A}}$
$\cos A \cdot \sin A$
RHS $=\frac{1}{\frac{\sin \mathrm{~A}}{\cos \mathrm{~A}}+\frac{\cos \mathrm{A}}{\sin \mathrm{A}}} \quad \quad \frac{1}{2}$
$=\frac{\frac{1}{\sin ^{2} A+\cos ^{2} A}}{\sin A \cdot \cos A}$
$=\sin \mathrm{A} \cdot \cos \mathrm{A}$
\therefore LHS $=$ RHS
34. In Figure-4, AB and CD are two diameters of a circle (with centre O) perpendicular to each other and OD is the diameter of the smaller circle.
If $\mathrm{OA}=7 \mathrm{~cm}$, then find the area of the shaded region.

Fig. 4

Sol. Area of smaller circle $=\pi \mathrm{r}^{2}=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}=\frac{77}{2}=38.5 \mathrm{~cm}^{2}$
Area of Big semi-circle $=\frac{1}{2} \times \frac{22}{7} \times 7 \times 7=77 \mathrm{~cm}^{2}$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times 14 \times 7=49 \mathrm{~cm}^{2}$
Area of shaded portion $=$ ar. of smaller circle + ar. of big semicircle $-\operatorname{ar}$. of $\triangle A B C$

$$
=38.5+77-49=66.5 \mathrm{~cm}^{2}
$$

OR

In Figure-5, ABCD is a square with side 7 cm . A circle is drawn circumscribing the square. Find the area of the shaded region.

Fig. 5
Sol. Area of sqaure $\mathrm{ABCD}=\mathrm{a}^{2}=7^{2}=49 \mathrm{~cm}^{2}$

Diagonal of square $=\sqrt{2} a=7 \sqrt{2} \mathrm{~cm}$
$\therefore \quad$ Radius of circle $=\frac{7 \sqrt{2}}{2} \mathrm{~cm}$
Area of circle $=\frac{22}{7} \times\left(\frac{7 \sqrt{2}}{2}\right)^{2}=77 \mathrm{~cm}^{2}$
Area of shaded, portion $=77-49=28 \mathrm{~cm}^{2}$

SECTION D

Question numbers 35 to 40 carry 4 marks each.
35. Find other zeroes of the polynomial
$p(x)=3 x^{4}-4 x^{3}-10 x^{2}+8 x+8$,
if two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.

Sol. $(x-\sqrt{2}) \&(x+\sqrt{2})$ are two factors
i.e. $x^{2}-2$ is a factor

$$
3 x^{2}-4 x-4=(3 x+2)(x-2)
$$

$\therefore \quad-2 / 3,2$ are other two zeroes.

OR

Divide the polynomial $g(x)=x^{3}-3 x^{2}+x+2$ by the polynomial $x^{2}-2 x+1$ and verify the division algorithm.

Sol.

$$
\begin{array}{r}
x ^ { 2 } - 2 x + 1 \longdiv { x ^ { \not ㇒ } - 3 x ^ { 2 } + \not x + 2 } \\
\frac{x^{6}-2 x^{2}+\not x}{} \\
\frac{-x^{2 \prime}+2}{} \\
\frac{-x^{2 \prime}-1+2 x}{}+\frac{-2 x+3}{}
\end{array}
$$

Verify,

$$
\begin{aligned}
\mathrm{P}(\mathrm{x}) & =\mathrm{q}(\mathrm{x}) \times \mathrm{g}(\mathrm{x})+\mathrm{r}(\mathrm{x}) \\
& =(\mathrm{x}-1)\left(\mathrm{x}^{2}-2 \mathrm{x}+1\right)+(-2 \mathrm{x}+3) \\
& =\mathrm{x}^{3}-3 \mathrm{x}^{2}+3 \mathrm{x}-1-2 \mathrm{x}+3 \\
& =\mathrm{x}^{3}-3 \mathrm{x}^{2}+\mathrm{x}+2
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
x ^ { 2 } - 2 \longdiv { 3 x ^ { 4 } - 4 x ^ { 3 } - 1 0 x ^ { 2 } + 8 x - 8 } \begin{array} { r }
{ 3 x + 8 } \\
{ 3 x ^ { 4 } \quad - 6 x ^ { 2 } } \\
{ - \quad + } \\
{ - 4 x ^ { 5 } - 4 x ^ { 2 } + 8 x + 8 }
\end{array}
\end{array} \\
& +\frac{-4 x^{5}+8 x}{-4 x^{2}+8} \\
& -4 x^{2}+8 \\
& + \\
& 0
\end{aligned}
$$

36. From the top of a 75 m high lighthouse from the sea level, the angles of depression of two ships are 30° and 45°. If the ships are on the opposite sides of the lighthouse, then find the distance between the two ships.

Sol.

Correct figure
In $\triangle \mathrm{ACD}$

$$
\begin{aligned}
& \frac{75}{\mathrm{x}}=\frac{1}{\sqrt{3}} \\
& \therefore \mathrm{x}=75 \sqrt{3}
\end{aligned}
$$

In $\triangle B C D$

$$
\frac{75}{y}=1
$$

$\therefore \mathrm{y}=75$
\therefore Distance b / w two ships i.e. $\mathrm{AB}=\mathrm{x}+\mathrm{y}$

$$
\begin{aligned}
& =75 \sqrt{3}+75 \\
& =75(\sqrt{3}+1)
\end{aligned}
$$

37. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, prove that the other two sides are divided in the same ratio.

Sol. For correct given, To prove, Construction, Figure
For correct proof

OR

If Figure-6, in an equilateral triangle $\mathrm{ABC}, \mathrm{AD} \perp \mathrm{BC}, \mathrm{BE} \perp \mathrm{AC}$ and $\mathrm{CF} \perp \mathrm{AB}$. Prove that $4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)=9 \mathrm{AB}^{2}$.

Figure 6

Sol. Proof

$$
\begin{align*}
& \text { In } \triangle \mathbf{A B D}, \mathrm{AD}^{2}=\mathrm{AB}^{2}-\mathrm{BD}^{2} \tag{i}\\
& \text { In } \triangle \mathbf{B C E} \mathrm{BE}^{2}=\mathrm{BC}^{2}-\mathrm{CE}^{2} \tag{ii}\\
& \text { In } \triangle \text { ACF } \mathrm{CF}^{2}=\mathrm{AC}^{2}-\mathrm{AF}^{2} \\
& \mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{AC}^{2}-\mathrm{BD}^{2}-\mathrm{CE}^{2}-\mathrm{AF}^{2} \\
& =3 \mathrm{AB}^{2}-\left(\frac{\mathrm{BC}}{2}\right)^{2}-\left(\frac{\mathrm{AC}}{2}\right)^{2}-\left(\frac{\mathrm{AB}}{2}\right)^{2} \\
& =3 \mathrm{AB}^{2}-\frac{3}{4} \mathrm{AB}^{2} \\
& =\frac{9}{4} \mathrm{AB}^{2} \\
& 4\left(\mathrm{AD}^{2}+\mathrm{BE}^{2}+\mathrm{CF}^{2}\right)=9 \mathrm{AB}^{2}
\end{align*}
$$

38. A container open at the top and made up of a metal sheet, is in the form of a frustum of a cone of height 14 cm with radii of its lower and upper circular ends as 8 cm and 20 cm , respectively. Find the capacity of the container.
Sol. Vol. of container $=\frac{1}{3} \pi h\left(r_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right)$

$$
\begin{align*}
& =\frac{1}{3} \times \frac{22}{7} \times 14\left[(8)^{2}+(20)^{2}+8 \times 20\right] \tag{2}\\
& =\frac{1}{3} \times \frac{22}{7} \times 14[64+400+160] \\
& =9152 \mathrm{~cm}^{3}
\end{align*}
$$

39. Two water taps together can fill a tank in $9 \frac{3}{8}$ hours. The tap of larger diameter takes 10 hours less than the smaller one to fill the tank separately. Find the time in which each tap can separately fill the tank.
Sol. Let smaller diameter tap takes x hours to fill the tank

ATQ

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{x-10}=\frac{8}{75} \\
& 8 x^{2}-230 x+750=0 \\
& (8 x-30)(x-25)=0 \\
& x=\frac{15}{4} \text { and } x=25
\end{aligned}
$$

Rejected $\mathrm{x}=\frac{15}{4}$,
Hence, time taken by smaller diameter tap $=25 \mathrm{hrs}$

Time taken by larger diameter tap $=25-10=15 \mathrm{hrs}$

OR
A rectangular park is to be designed whose breadth is $\mathbf{3 ~ m}$ less than its length. Its area is to be 4 square metres more than the area of a park that has already been made in the shape of an isosceles triangle with its base as the breadth of the Rectangular park and of altitude $\mathbf{1 2} \mathbf{~ m}$. Find the length and breadth of the park.

Sol.

Let length of rectangle $=x$
\therefore Breadth $=\mathrm{x}-3$
ar. of reactangle $=x(x-3)$
$=\mathrm{x}^{2}-3 \mathrm{x}$
Area of Isosceles $\triangle \mathrm{ADE}$
$=\frac{1}{2}(\mathrm{x}-3) \times 12$
$=6 x-18$

ATQ

$$
\begin{aligned}
& x^{2}-3 x=6 x-18+4 \\
& x^{2}-9 x+14=0 \\
& (x-7)(x-2)=0 \\
& x=7, x=2 \quad \text { Rejected } \\
& \therefore \text { Length of rectangle }=7 \mathrm{~cm} \\
& \text { Breadth of rectangle }=4 \mathrm{~cm}
\end{aligned}
$$

40. Draw a 'less than' ogive for the following frequency distribution:

Classes:	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Frequency:	7	14	13	12	20	11	15	8

Sol.
getting the pts $(10,7),(20,21)$
$(30,34),(40,46),(50,66)$
$(60,77),(70,92),(80,100)$
Plotting and Joining the pts to get the correct ogive

