	CBSE Cla	ss 10 Maths Ques	tion Paper Solution	on 2020 Set 30/1/ [,]	1							
		QUESTION PAPE	ER CODE 30/1/1									
	E	XPECTED ANSWE	R/VALUE POINTS	5								
		SECTIO	DN – A									
	Q. No. 1 to 10 are multiple choice type question of 1 mark each. Select the correct option.											
Q.No.					Marks							
1.	If one of the zeroes of k is	of the quadratic poly	nomial $x^2 + 3x + k$ is	2, then the value								
	(a) 10	(b) −10	(c) -7	(d) −2								
	Ans: (b) -10				1							
2.	The total number of	factors of a prime nu	umber is									
	(a) 1	(b) 0	(c) 2	(d) 3								
	Ans: (c) 2				1							
3.	The quadratic polyn 6, is	omial, the sum of wh	ose zeroes is -5 and	their product is								
	(a) $x^2 + 5x + 6$	(b) $x^2 - 5x + 6$	(c) $x^2 - 5x - 6$	(d) $-x^2 + 5x + 6$								
	Ans: (a) $x^2 + 5x + $	6			1							
4.	The value of k for which the system of equations $x + y - 4 = 0$ and $2x + ky = 3$ has no solution, is											
	(a) -2	(b) ≠2	(c) 3	(d) 2								
	Ans: (d) 2				1							
5.	The HCF and the LO	CM of 12, 21, 15 resp	pectively are									
	(a) 3,140	(b) 12,420	(c) 3,420	(d) 420,3								
	Ans: (c) 3,420				1							
6.	The value of x for w consecutive terms o	thich $2x_{,}(x + 10)$ and f an AP, is	(3x+2) are the thr	ee								
	(a) 6	(b) –6	(c) 18	(d) -18								
	Ans: (a) 6				1							
7.	The first term of an	AP is p and the comr	non difference is q, t	hen its 10 th term is								
	(a) $q + 9p$	(b) p – 9q	(c) $p + 9q$	(d) 2p + 9q								
0	Ans: (c) $p + 9q$			· 0 1 0) ·	1							
8.	The distance betwee	in the points (a $\cos \theta$	+ b sin θ , 0) and (0,	a $\sin \theta - b \cos \theta$, is								
	(a) $a^2 + b^2$	(b) $a^2 - b^2$	(c) $\sqrt{a^2+b^2}$	(d) $\sqrt{a^2 - b^2}$								
	Ans: (c) $\sqrt{a^2 + b^2}$				1							
9.	If the point $P(k, 0) = B(-7, 4)$ in the ratio	11 \cdot 2 then the value	ent joining the points	A(2, -2) and								
	(a) 1	(b) 2	(c) -2	(d) -1								
	Ans: (d) –1	. /	~ /	~ /	1							
10.	The value of p, for v	which the points A(3,	1), B(5, p) and C(7,	-5) are collinear, is								
	(a) -2	(b) 2	(c)−1	(d) 1								
	Ans: (a) –2				1							

	$\therefore \text{ Ratio of volumes} = \frac{\frac{1}{3}\pi r_1^2 h_1}{\frac{1}{3}\pi r_2^2 h_2} = 3:1$	1/2
18.	A letter of English alphabet is chosen at random. What is the probability that the chosen letter is a consonant.	
	Ans: P (consonant) = $\frac{21}{26}$	1
19.	A die is thrown once. What is the probability of getting a number less than 3?	
	Ans: P (number less than 3) = $\frac{2}{6}$ or $\frac{1}{3}$	1
	OR	
	If the probability of winning a game is 0.07, what is the probability of losing it? A net $P_{i}(losing) = 1 - 0.07$	1/2
	Ans: $P(\text{lossing}) = 1 - 0.07$ = 0.93	1/2
20.	If the mean of first n natural number is 15, then find n.	
	$\frac{n(n+1)}{2}$	1/0
	Ans: $\frac{2}{n} = 15$	1/2
	$\therefore n = 29$	1/2
	SECTION – B O. Nos. 21 to 26 carry 2 marks each.	
21.	Show that $(a - b)^2$, $(a^2 + b^2)$ and $(a + b)^2$ are in AP.	
	Ans: $(a^2 + b^2) - (a - b)^2 = 2ab$	1
	$(a+b)^2 - (a^2 + b^2) = 2ab$	1
	Common difference is same. ∴ given terms are in AP	
22.	In Fig. 2 DE AC and DC AP. Prove that $\frac{BE}{EC} = \frac{BC}{CP}$.	
	$B = \begin{bmatrix} C \\ Fig 2 \end{bmatrix} P$	
	Ans: In $\triangle ABC$, DE AC, $\therefore \frac{BD}{DA} = \frac{BE}{EC}$ (i)	1
	In $\triangle ABP$, DC AP, $\therefore \frac{BD}{DA} = \frac{BC}{CP}$ (ii)	1/2
	From (i) & (ii), $\frac{BE}{EC} = \frac{BC}{CP}$	1/2

26.	Find the	mean	of the	followin	ng distril	oution:					
	Class:		3-5	5-7	7-9	9-11	11-13				
	Frequen	cy:	5	10	10	7	8				
	Ans:	Clas	ses	Xi	\mathbf{f}_{i}	f _x x _i					11/2
	3-5 4 5 20										
		5 –	7	6	10	60					
		7 –	9	8	10	80					
		9 – 1	11	10	7	70					
		11 –	13	12	8	96					
		Tota	al		40	326					
		$\overline{\mathbf{x}} = \mathbf{x}$	$\frac{\sum f_i x_i}{\sum c}$	$=\frac{326}{40}$	= 8.15						1/2
			$\sum t_i$	40		OR					
	Find the	mode	of the	followin	g data:	011					
	Class:		0-20	20-40	40-60	60-80	80-100	110-120	120-140		
	Frequency: 6 8 10 12 6 5 3										
	Ans: N	Modal	class :	60 - 80							1/2
	Ν	Mode =	$\ell + \frac{1}{2}$	$\frac{f_1 - f_0}{f_1 - f_0}$	$\frac{1}{f} \times h =$	$60 + \frac{1}{24}$	$\frac{2-10}{10-6}$	×20			1
		=	ے + 60 +	$f_1 - f_0 - f_0$ 5 = 65	¹ 2	24	-10-0				1/2
			00	00	SEC	ΓION -	- C				
	Questio	n num	bers 2	7 to 34	carry 3	marks	each.				
27.	Find the of the po	quadra olynom	atic polial f(x)	$\frac{1}{2} = ax^2 + \frac{1}{2}$	l whose - bx + c,	zeroes a $\neq 0, \phi$	are recip c ≠ 0.	rocal of th	ne zeroes		
	Ans:	f(x) = a	$ax^2 + b$	bx + c							
	($\alpha + \beta =$	$-\frac{b}{a}$, c	$\alpha\beta = \frac{c}{a}$							1/2
	New sum of zeroes $=$ $\frac{1}{\alpha} + \frac{1}{\beta} = -\frac{b}{c}$										
	1	New pr	oduct	ofzeroe	$s = \frac{1}{\alpha} \times \frac{1}{\alpha}$	$\frac{1}{\beta} = \frac{a}{c}$					1
	∴ Req	uired q	uardra	tic poly	nomial =	$= x^2 + \frac{t}{c}$	$\frac{b}{c}x + \frac{a}{c}o$	or $\left(cx^2 + b\right)$	bx + a		1/2

	OR	
	If 4 is the zero of the cubic polynomial $x^3 - 3x^2 - 10x + 24$,	
	find its other two zeroes.	
	Ans: $x - 4$ is a factor of given polynomial.	
	$\begin{array}{c} x-4 \\ \xrightarrow{) x^{3} - 3x^{2} - 10x + 24} (x^{2} + x - 6) \\ \xrightarrow{x^{3} - 4x^{2}} \\ \xrightarrow{-/ + } \\ \hline x^{2} - 10x + 24 \\ \xrightarrow{x^{2} - 4x} \\ \xrightarrow{-/ + } \\ \hline -6x + 24 \\ \xrightarrow{-/ + / 24} \end{array}$	2
	0	
	$x^{2} + x - 6 = (x + 3)(x - 2)$	
	\therefore Other than zeroes are -3 and 2.	1
29.	In a flight of 600 km, an aircraft was slowed due to bad weather. Its average speed for the trip was reduced to 200 km/hr and time of flight increased by 30 minutes. Find the original duration of flight.	
	Ans: Let the speed of aircraft be x km/hr	
	$\therefore \ \frac{600}{x - 200} - \frac{600}{x} = \frac{30}{60}$	1
	$\Rightarrow x^2 - 200x - 240000 = 0$	1
	(x - 600) (x + 400) = 0	
	x = 600, -400 (Rejected)	1/2
	Speed of aircraft = 600 km/hr	
20	\therefore Duration of flight = 1 hr	1/2
30.	Pind the area of triangle PQR formed by the points $P(-5, 7)$, $Q(-4, -5)$ and $R(4, 5)$.	
	Ans: $\operatorname{ar}(\operatorname{PQR}) = \frac{1}{2} \left[-5(-5-5) - 4(5-7) + 4(7+5) \right] \operatorname{sq. units}$	2
	$=\frac{1}{2}[50+8+48]$ sq. units	
	= 53 sq. units	1
	OR	
	If the point $C(-1, 2)$ divides internally the line segment joining A(2, 5) and B(x, y) in the ratio 3 : 4, find the coordinates of B.	
	Ans: Coordinates of C arc $\left(\frac{3x+8}{3y+20}\right) = (-1,2)$	1
	Ans. Coordinates of Care $\begin{pmatrix} 7 & 7 \\ 7 & 7 \end{pmatrix}$ $\begin{pmatrix} 3, -7 \\ 3:4 \end{pmatrix}$	2
	$\Rightarrow x = -5, y = -2$ (2, 5) (-1, 2) (x, y)	1
	\therefore Coordinates of B are (-5, -2)	1/2

31.	In Fig.5, $\angle D = \angle E$ and $\frac{AD}{DB} = \frac{AE}{EC}$, prove that BAC is an isosceles triangle.	
32.	Ans: $\angle D = \angle E \Rightarrow AE = AD$ $\Rightarrow AD = \Delta E \Rightarrow DB = EC$ $\Rightarrow AD + DB = AE + EC$ $\therefore AB = AC$ Hence $\triangle BAC$ is an isosceles triangle. In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then prove that the angle opposite to the first side is a right angle.	1 1/2 1 1/2
	Ans: For correct given, To prove, construction and figure. For correct proof.	$1\frac{1}{2}$ $1\frac{1}{2}$
33.	If $\sin\theta + \cos\theta = \sqrt{3}$, then prove that $\tan\theta + \cot\theta = 1$. Ans: $\sin\theta + \cos\theta = \sqrt{3} \Rightarrow (\sin\theta + \cos\theta)^2 = (\sqrt{3})^2$ $\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 3 \Rightarrow \sin\theta\cos\theta = 1$ L.H.S = $\tan\theta + \cot\theta = \frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = \frac{1}{\cos\theta\sin\theta} = 1 = \text{R.H.S}$	2 1 1 1
34.	A cone of base radius 4 cm is divided into two parts by drawing a plane through the mid-point of its height and parallel to its base. Compare the volume of the two parts.	
	Ans: Ans: AABC ~ ΔADE , $\frac{h}{2h} = \frac{BC}{4}$ $\therefore BC = 2 \text{ cm}$ Ratio of volumes of two parts $= \frac{\frac{1}{3}\pi \times 2^2 \times h}{\frac{1}{3}\pi \times (2^2 + 4^2 + 2 \times 4) \times h}$ $= \frac{4}{20} = \frac{1}{7} \text{ or } 1 : 7 \text{ (accept 7 : 1 also)}$	cor. fig 1/2 1 1 1/2
	28 7	

	SECTION – D	
	Question numbers 35 to 40 carry 4 marks each.	
35.	Show that the square of any positive integer cannot be of form $(5q + 2)$ or $(5q + 3)$ for any integer q.	
	Ans: Let a be any positive integer. Take $b = 5$ as the divisor.	
	\therefore a = 5m + r, r = 0,1,2,3,4	1
	Case-1 : $a = 5m \Rightarrow a^2 = 25m^2 = 5(5m^2) = 5q$	1/2
	Case-2 : $a = 5m+1 \implies a^2 = 5(5m^2 + 2m) + 1 = 5q + 1$	for
	Case-3 : $a = 5m+2 \implies a^2 = 5(5m^2 + 4m) + 4 = 5q + 4$	each
	Case-4 : $a = 5m+3 \implies a^2 = 5(5m^2 + 6m + 1) + 4 = 5q + 4$	case
	Case-5 : $a = 5m+4 \Rightarrow a^2 = 5(5m^2 + 8m + 3) + 1 = 5q + 1$	$=2\frac{1}{2}$
	Hence square of any positive integer cannot be of the form $(5q + 2)$ or $(5q + 3)$ for any integer q.	1/2
	OR	
	Prove that one of every three consecutive positive integers is divisible by 3. Ans: Let n be any positive integer. Divide it by 3.	
	\therefore n = 3q + r, r = 0, 1, 2	1
	Case-1 : $n = 3q$ (divisible by 3)	1.0
	n + 1 = 3q + 1, n + 2 = 3q + 2	1 for
	Case-2 : $n = 5q + 1 \implies n + 1 = 5q + 2$, $n + 2 = 5q + 5$ (divisible by 3)	each
•	Case-3 : $n = 3q + 2 \Rightarrow n + 1 = 3q + 3$ (divisible by 3), $n + 2 = 3q + 4$	case = 3
36.	of the first and last terms to the product of two middle terms is 7:15. Find the numbers	
	Ans: Let four consecutive number be $a - 3d$, $a - d$, $a + d$, $a + 3d$	1/2
	$Sum = 32 \therefore \ 4a = 32 \implies a = 8$	1/2
	$\frac{(a-3d)(a+3d)}{(a-d)(a+d)} = \frac{7}{15} \Longrightarrow 15(64-9d^2) = 7(64-d^2)$	1
	$\therefore d^2 = 4 \implies d = \pm 2$	1
	Four numbers are 2, 6, 10, 14.	1
	OR Solve: $1 + 4 + 7 + 10 + + x = 287$	
	Ans: $x = a_n = 1 + 3n - 3 = 3n - 2$	1
	n	
	$S_n = 287 \Longrightarrow \frac{\pi}{2} [1 + 3n - 2] = 287$	1
	$\therefore 3n^2 - n - 574 = 0$	1/2
	$(n-14)(3n+41) = 0 \Longrightarrow n = 14$	1
	$\therefore x = 3n - 2 = 40$	1/2

37.	Draw a line segment AB of length 7 cm. Taking A as centre, draw a circle of radius 3 cm and taking B as centre, draw another circle of radius 2 cm. Construct tangents to each circle from the centre of the other circle	
	Ans: Constructing the circles of radii 3 cm and 2 cm	1
	Constructing the tangents.	3
38.	A vertical tower stands on a horizontal plane and is surmounted by a vertical flag-staff of height 6 m. At a point on the plane, the angle of elevation of the bottom and top of the flag-staff are 30° and 45° re-	
	spectively. Find the height of the tower. (Take $\sqrt{3} = 1.73$)	
	Ans: A	cor. fig 1
	$\frac{11}{x} = \tan 30^{\circ}$	1
	$6 \text{ m} \qquad \qquad \Rightarrow x = h\sqrt{3}$	
	B $\frac{6+h}{x} = \tan 45^\circ \implies 6+h = x$	1
	h $\therefore h = \frac{6}{\sqrt{3}-1} = 3(\sqrt{3}+1) = 3 \times 2.73 \text{ m}$	
	$C \xrightarrow{43/30\%} D = 8.19 \text{ m}$	1
39.	A bucket in the form of a frustum of a cone of height 30 cm with radii of its lower and upper ends as 10 cm and 20 cm respectively. Find the capacity of the bucket. Also find the total cost of milk that can completely fill the	
	bucket at the rate of ₹ 40 per litre. $\left(Use \pi = \frac{22}{7} \right)$	
	Ans: Capacity of bucket = $\frac{1}{3}\pi h \left(r_1^2 + r_2^2 + r_1r_2\right)$	
	$= \frac{1}{3} \times \frac{22}{7} \times 30 (10^2 + 20^2 + 10 \times 20) \text{ cm}^3$	1
	$= 22000 \text{ cm}^3$	$1\frac{1}{2}$
	= 221	1/2
	Cost of milk = ₹ 40 × 22 = ₹ 880	1
40.	The following table gives production yield per hectare (in quintals) of wheat of 100 farms of a village:	
	Production yield/hect. 40-45 45-50 50-55 55-60 60-65 65-70	
	No. of farms 4 6 16 20 30 24	
	Change the distribution to 'a more than' type distribution and draw its ogive.	

The median if total frequ	of th uency	e follo is 100	wing):	data i	0 s 525.	R Find	the v	alues of	x and	l y,	_	
Class :	0-100	100-200	200-300	300-400	400-500	200-600	002-009	700-800	800-900	900-1000		
Frequency:	2	5	x	12	17	20	у	9	7	4		
Ans:											-	
Class	es		Frequ	ency	Cun freq	ulative uency	;					
0-100			2			2						
100-200			5			7						
200-300			х		7	+ x						
300-400			12	2	19) + x						
400-500			17	7	36	5 + x						
500-600			20	$20 \qquad 56 + x$		→ Median class						
600-700			У		56 + x + y							
/00-800			9		65 - 72	+ x+ y						
900-1000			/ 		76 -	- x- y + v+ v						
Total			10	0	70	ТХТУ						
76 + x = 500 - 6 Mediar $\Rightarrow 525$ Solving	$y = \frac{1}{600}$ is $y = \frac{1}{6}$ $y = 50$ $y = \frac{1}{6}$	$100 \Rightarrow$ s the r $+\frac{\frac{n}{2}}{f}$ $0 + \frac{50}{get}$ get, x	x + y nediar cf -x h $\frac{-36 - 20}{20}$ = 9	x = 24 n class $\frac{-x}{-x} \times 10^{-10}$	(i) 5							1
From (i), y =	= 15										1